Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress

Abstract

Retroviral Gag proteins encode sequences, termed late domains, which facilitate the final stages of particle budding from the plasma membrane. We report here that interactions between Tsg101, a factor involved in endosomal protein sorting, and short peptide motifs in the HIV-1 Gag late domain and Ebola virus matrix (EbVp40) proteins are essential for efficient egress of HIV-1 virions and Ebola virus-like particles. EbVp40 recruits Tsg101 to sites of particle assembly and a short, EbVp40-derived Tsg101-binding peptide sequence can functionally substitute for the HIV-1 Gag late domain. Notably, recruitment of Tsg101 to assembling virions restores budding competence to a late-domain–defective HIV-1 in the complete absence of viral late domain. These studies define an essential virus–host interaction that is conserved in two unrelated viruses. Because the Tsg101 is recruited by small, conserved viral sequence motifs, agents that mimic these structures are potential inhibitors of the replication of these lethal human pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlative mutagenesis establishes the functional importance of the HIV-1 Gag–Tsg101 interaction.
Figure 2: A PTAP motif in Ebola virus Vp40 is required for the formation of virus-like particles and for Tsg101 binding.
Figure 3: EbVp40 induces the relocalization of Tsg101 to sites of particle assembly.
Figure 4: Short sequences derived from HIV-1 p6 and EbVp40 and containing the PTAP motif bind Tsg101, and the EbVp40 sequence functionally substitutes for the HIV-1 L-domain.
Figure 5: An L-domain–defective HIV-1 can be complemented in trans by recruitment of homologous or heterologous late domains or Tsg101-binding peptides to the site of particle assembly.
Figure 6: Recruitment of Tsg101 to sites of HIV-1 particle assembly rescues virion budding in the absence of a viral L-domain.

Similar content being viewed by others

References

  1. Wills, J.W. et al. An assembly domain of the Rous sarcoma virus Gag protein required late in budding. J. Virol. 68, 6605–6618 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Xiang, Y., Cameron, C.E., Wills, J.W. & Leis, J. Fine mapping and characterization of the Rous sarcoma virus Pr76gag late assembly domain. J. Virol. 70, 5695–5700 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yasuda, J. & Hunter, E. A proline-rich motif (PY) in the Gag polyprotein of Mason-Pfizer monkey virus plays a maturation-independent role in virion release. J. Virol. 72, 4095–4103 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yuan, B., Campbell, S., Bacharach, E., Rein, A. & Goff, S.P. Infectivity of Moloney murine leukemia virus defective in late assembly events is restored by late assembly domains of other retroviruses. J. Virol. 74, 7250–7260 (2000).

    Article  CAS  Google Scholar 

  5. Puffer, B.A., Parent, L.J., Wills, J.W. & Montelaro, R.C. Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein. J. Virol. 71, 6541–6546 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gottlinger, H.G., Dorfman, T., Sodroski, J.G. & Haseltine, W.A. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc. Natl. Acad. Sci. USA 88, 3195–3199 (1991).

    Article  CAS  Google Scholar 

  7. Parent, L.J. et al. Positionally independent and exchangeable late budding functions of the Rous sarcoma virus and human immunodeficiency virus Gag proteins. J. Virol. 69, 5455–5460 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang, M., Orenstein, J.M., Martin, M.A. & Freed, E.O. p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J. Virol. 69, 6810–6818 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Strack, B., Calistri, A., Accola, M.A., Palu, G. & Gottlinger, H.G. A role for ubiquitin ligase recruitment in retrovirus release. Proc. Natl. Acad. Sci. USA 97, 13063–13068 (2000).

    Article  CAS  Google Scholar 

  10. Puffer, B.A., Watkins, S.C. & Montelaro, R.C. Equine infectious anemia virus Gag polyprotein late domain specifically recruits cellular AP-2 adapter protein complexes during virion assembly. J. Virol. 72, 10218–10221 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. VerPlank, L. et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc. Natl. Acad. Sci. USA 98, 7724–7729 (2001).

    Article  CAS  Google Scholar 

  12. Kikonyogo, A. et al. Proteins related to the Nedd4 family of ubiquitin protein ligases intereact with the L domain of Rous sarcoma virus and are required for gag budding from cells. Proc. Natl. Acad. Sci. USA 98, 11199–11204 (2001).

    Article  CAS  Google Scholar 

  13. Babst, M., Odorizzi, G., Estepa, E.J. & Emr, S.D. Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 1, 248–258 (2000).

    Article  CAS  Google Scholar 

  14. Bishop, N. & Woodman, P. TSG101/mammalian VPS23 and mammalian VPS28 interact directly and are recruited to VPS4-induced endosomes. J. Biol. Chem. 276, 11735–11742 (2001).

    Article  CAS  Google Scholar 

  15. Katzmann, D.J., Babst, M. & Emr, S.D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).

    Article  CAS  Google Scholar 

  16. Harty, R.N., Brown, M.E., Wang, G., Huibregtse, J. & Hayes, F.P. A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proc. Natl. Acad. Sci. USA 97, 13871–13876 (2000).

    Article  CAS  Google Scholar 

  17. Harty, R.N., Paragas, J., Sudol, M. & Palese, P. A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding. J. Virol. 73, 2921–2929 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Craven, R.C., Harty, R.N., Paragas, J., Palese, P. & Wills, J.W. Late domain function identified in the vesicular stomatitis virus M protein by use of rhabdovirus–retrovirus chimeras. J. Virol. 73, 3359–3365 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Timmins, J., Scianimanico, S., Schoehn, G. & Weissenhorn, W. Vesicular release of ebola virus matrix protein VP40. Virology 283, 1–6 (2001).

    Article  CAS  Google Scholar 

  20. Jasenosky, L.D., Neumann, G., Lukashevich, I. & Kawaoka, Y. Ebola virus VP40-induced particle formation and association with the lipid bilayer. J. Virol. 75, 5205–5214 (2001).

    Article  CAS  Google Scholar 

  21. Lee, P.P. & Linial, M.L. Efficient particle formation can occur if the matrix domain of human immunodeficiency virus type 1 Gag is substituted by a myristylation signal. J. Virol. 68, 6644–6654 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Reil, H., Bukovsky, A.A., Gelderblom, H.R. & Gottlinger, H.G. Efficient HIV-1 replication can occur in the absence of the viral matrix protein. EMBO J. 17, 2699–2708 (1998).

    Article  CAS  Google Scholar 

  23. Luban, J., Alin, K.B., Bossolt, K.L., Humaran, T. & Goff, S.P. Genetic assay for multimerization of retroviral gag polyproteins. J. Virol. 66, 5157–5160 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuan, X., Yu, X., Lee, T.H. & Essex, M. Mutations in the N-terminal region of human immunodeficiency virus type 1 matrix protein block intracellular transport of the Gag precursor. J. Virol. 67, 6387–6394 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tritel, M. & Resh, M.D. Kinetic analysis of human immunodeficiency virus type 1 assembly reveals the presence of sequential intermediates. J. Virol, 74, 5845–5855 (2000).

    Article  CAS  Google Scholar 

  26. Schubert, U. et al. Proteasome inhibition interferes with gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proc. Natl. Acad. Sci. USA 97, 13057–13062 (2000).

    Article  CAS  Google Scholar 

  27. Patnaik, A., Chau, V. & Wills, J.W. Ubiquitin is part of the retrovirus budding machinery. Proc. Natl. Acad. Sci. USA 97, 13069–13074 (2000).

    Article  CAS  Google Scholar 

  28. Bieniasz, P.D. & Cullen, B.R. Multiple blocks to human immunodeficiency virus type 1 replication in rodent cells. J. Virol. 74, 9868–9877 (2000).

    Article  CAS  Google Scholar 

  29. Bogerd, H.P., Fridell, R.A., Blair, W.S. & Cullen, B.R. Genetic evidence that the Tat proteins of human immunodeficiency virus types 1 and 2 can multimerize in the eukaryotic cell nucleus. J. Virol. 67, 5030–5034 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bieniasz, P.D., Grdina, T.A., Bogerd, H.P. & Cullen, B.R. Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. EMBO J. 17, 7056–7065 (1998).

    Article  CAS  Google Scholar 

  31. Garrus, J.E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Li for technical assistance; H.-D. Klenk for the EbVp40 cDNA; N. Landau, P. Charneau, B. Chesebro and H. Chen for providing P4/R5 and the 183-H12-5C hybridoma cell lines through the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH; and B. Mulder and M. Muesing for antibodies and helpful discussions. This work was supported by the Donald A. Pels Charitable Trust, The Columbia-Rockefeller Center for AIDS Research, and by a grant from the NIAID AI50111 (to P.D.B). J.M.-S. is the recipient of a Postdoctoral Fellowship from the Spanish Ministerio de Educación, Cultura y Deporte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Bieniasz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin-Serrano, J., Zang, T. & Bieniasz, P. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Med 7, 1313–1319 (2001). https://doi.org/10.1038/nm1201-1313

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1201-1313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing