Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1

Abstract

Focal segmental glomerulosclerosis (FSGS) is a frequent and severe glomerular disease characterized by destabilization of podocyte foot processes. We report that transgenic expression of the microRNA miR-193a in mice rapidly induces FSGS with extensive podocyte foot process effacement. Mechanistically, miR-193a inhibits the expression of the Wilms' tumor protein (WT1), a transcription factor and master regulator of podocyte differentiation and homeostasis. Decreased expression levels of WT1 lead to downregulation of its target genes PODXL (podocalyxin) and NPHS1 (nephrin), as well as several other genes crucial for the architecture of podocytes, initiating a catastrophic collapse of the entire podocyte-stabilizing system. We found upregulation of miR-193a in isolated glomeruli from individuals with FSGS compared to normal kidneys or individuals with other glomerular diseases. Thus, upregulation of miR-193a provides a new pathogenic mechanism for FSGS and is a potential therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Doxycycline-induced miR-193a transgenic mice develop a renal phenotype.
Figure 2: Development of glomerular lesions induced by overexpression of miR-193a after 2, 4, 6 and 10 weeks.
Figure 3: miR-193a target genes in podocytes.
Figure 4: Conditional knockout of Wt1 induces an FSGS phenotype similar to that caused by overexpression of miR-193a.
Figure 5: miR-193a–induced effects are rescued by Wt1 overexpression.
Figure 6: miR-193a in cultured human podocytes and human glomerular diseases.

Similar content being viewed by others

References

  1. D'Agati, V.D., Kaskel, F.J. & Falk, R.J. Focal segmental glomerulosclerosis. N. Engl. J. Med. 365, 2398–2411 (2011).

    CAS  PubMed  Google Scholar 

  2. Wiggins, R.C. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 71, 1205–1214 (2007).

    CAS  PubMed  Google Scholar 

  3. Inui, M., Martello, G. & Piccolo, S. MicroRNA control of signal transduction. Nat. Rev. Mol. Cell Biol. 11, 252–263 (2010).

    CAS  PubMed  Google Scholar 

  4. Kato, M., Park, J.T. & Natarajan, R. MicroRNA and the glomerulus. Exp. Cell Res. 318, 993–1000 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bennett, M.R. et al. Laser capture microdissection-microarray analysis of focal segmental glomerulosclerosis glomeruli. Nephron Exp. Nephrol. 107, e30–e40 (2007).

    CAS  PubMed  Google Scholar 

  6. Hodgin, J.B. et al. A molecular profile of focal segmental glomerulosclerosis from formalin-fixed, paraffin-embedded tissue. Am. J. Pathol. 177, 1674–1686 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shi, S. et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J. Am. Soc. Nephrol. 19, 2159–2169 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Morrison, A.A., Viney, R.L., Saleem, M.A. & Ladomery, M.R. New insights into the function of the Wilm tumor suppressor gene WT1 in podocytes. Am. J. Physiol. Renal Physiol. 295, F12–F17 (2008).

    CAS  PubMed  Google Scholar 

  9. Seibler, J. et al. Reversible gene knockdown in mice using a tight, inducible shRNA expression system. Nucleic Acids Res. 35, e54 (2007).

    PubMed  PubMed Central  Google Scholar 

  10. Takemoto, M. et al. A new method for large scale isolation of kidney glomeruli from mice. Am. J. Pathol. 161, 799–805 (2002).

    PubMed  PubMed Central  Google Scholar 

  11. Creighton, C.J., Nagaraja, A.K., Hanash, S.M., Matzuk, M.M. & Gunaratne, P.H. A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions. RNA 14, 2290–2296 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. John, B., et al. Human MicroRNA targets. PLoS Biol. 2, e363 (2004).

    PubMed  PubMed Central  Google Scholar 

  13. Ohtaka, A., Ootaka, T., Sato, H. & Ito, S. Phenotypic change of glomerular podocytes in primary focal segmental glomerulosclerosis: developmental paradigm? Nephrol. Dial. Transplant. 17 (suppl. 9), 11–15 (2002).

    CAS  PubMed  Google Scholar 

  14. Chau, Y.Y. et al. Acute multiple organ failure in adult mice deleted for the developmental regulator WT1. PLoS Genet. 7, e1002404 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Palmer, R.E. et al. WT1 regulates the expression of the major glomerular podocyte membrane protein Podocalyxin. Curr. Biol. 11, 1805–1809 (2001).

    CAS  PubMed  Google Scholar 

  16. Wagner, N., Wagner, K.D., Xing, Y., Scholz, H. & Schedl, A. The major podocyte protein nephrin is transcriptionally activated by the Wilms' tumor suppressor WT1. J. Am. Soc. Nephrol. 15, 3044–3051 (2004).

    PubMed  Google Scholar 

  17. Ratelade, J. et al. A murine model of Denys-Drash syndrome reveals novel transcriptional targets of WT1 in podocytes. Hum. Mol. Genet. 19, 1–15 (2010).

    CAS  PubMed  Google Scholar 

  18. Schumacher, V.A. et al. WT1-dependent sulfatase expression maintains the normal glomerular filtration barrier. J. Am. Soc. Nephrol. 22, 1286–1296 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kreidberg, J.A. et al. WT-1 is required for early kidney development. Cell 74, 679–691 (1993).

    CAS  PubMed  Google Scholar 

  20. Shigehara, T. et al. Inducible podocyte-specific gene expression in transgenic mice. J. Am. Soc. Nephrol. 14, 1998–2003 (2003).

    CAS  PubMed  Google Scholar 

  21. Schönig, K., Schwenk, F., Rajewsky, K. & Bujard, H. Stringent doxycycline dependent control of CRE recombinase in vivo. Nucleic Acids Res. 30, e134 (2002).

    PubMed  PubMed Central  Google Scholar 

  22. Venkatachalam, M.A., Cotran, R.S. & Karnovsky, M.J. An ultrastructural study of glomerular permeability in aminonucleoside nephrosis using catalase as a tracer protein. J. Exp. Med. 132, 1168–1180 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaplan, B.S., Renaud, L. & Drummond, K.N. Effects of aminonucleoside, daunomycin, and adriamycin on carbon oxidation by glomeruli. Lab Invest. 34, 174–178 (1976).

    CAS  PubMed  Google Scholar 

  24. Binder, C.J., Weiher, H., Exner, M. & Kerjaschki, D. Glomerular overproduction of oxygen radicals in Mpv17 gene-inactivated mice causes podocyte foot process flattening and proteinuria: a model of steroid-resistant nephrosis sensitive to radical scavenger therapy. Am. J. Pathol. 154, 1067–1075 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wei, C. et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 17, 952–960 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Farquhar, M.G., Saito, A., Kerjaschki, D. & Orlando, R.A. The Heymann nephritis antigenic complex: megalin (gp330) and RAP. J. Am. Soc. Nephrol. 6, 35–47 (1995).

    CAS  PubMed  Google Scholar 

  27. Seiler, M.W., Venkatachalam, M.A. & Cotran, R.S. Glomerular epithelium: structural alterations induced by polycations. Science 189, 390–393 (1975).

    CAS  PubMed  Google Scholar 

  28. Kashtan, C., Fish, A.J., Kleppel, M., Yoshioka, K. & Michael, A.F. Nephritogenic antigen determinants in epidermal and renal basement membranes of kindreds with Alport-type familial nephritis. J. Clin. Invest. 78, 1035–1044 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Juhila, J. et al. Inducible nephrin transgene expression in podocytes rescues nephrin-deficient mice from perinatal death. Am. J. Pathol. 176, 51–63 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Barisoni, L., Bruggeman, L.A., Mundel, P., D'Agati, V.D. & Klotman, P.E. HIV-1 induces renal epithelial dedifferentiation in a transgenic model of HIV-associated nephropathy. Kidney Int. 58, 173–181 (2000).

    CAS  PubMed  Google Scholar 

  31. Alpers, C.E. & Hudkins, K.L. Mouse models of diabetic nephropathy. Curr. Opin. Nephrol. Hypertens. 20, 278–284 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Obad, S. et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nat. Genet. 43, 371–378 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhdanova, O. et al. The inducible deletion of Drosha and microRNAs in mature podocytes results in a collapsing glomerulopathy. Kidney Int. 80, 719–730 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo, J.K. et al. WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum. Mol. Genet. 11, 651–659 (2002).

    CAS  PubMed  Google Scholar 

  35. Ross, M.D. et al. Math6 expression during kidney development and altered expression in a mouse model of glomerulosclerosis. Dev. Dyn. 235, 3102–3109 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kerjaschki, D., Sharkey, D.J. & Farquhar, M.G. Identification and characterization of podocalyxin—the major sialoprotein of the renal glomerulus. J. Cell Biol. 98, 1591–1596 (1984).

    CAS  PubMed  Google Scholar 

  37. Takeda, T., McQuistan, T., Orlando, R.A. & Farquhar, M.G. Loss of glomerular foot processes is associated with uncoupling of podocalyxin from the actin cytoskeleton. J. Clin. Invest. 108, 289–301 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Doyonnas, R. et al. Anuria, omphalocele and perinatal lethality in mice lacking the CD34-related protein podocalyxin. J. Exp. Med. 194, 13–27 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Huber, T.B. & Benzing, T. The slit diaphragm: a signalling platform to regulate podocyte function. Curr. Opin. Nephrol. Hypertens. 14, 211–216 (2005).

    PubMed  Google Scholar 

  40. Lenkkeri, U. et al. Structure of the gene for congenital nephrotic syndrome of the Finnish type (NPHS1) and characterization of mutations. Am. J. Hum. Genet. 64, 51–61 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rantanen, M. et al. Nephrin TRAP mice lack slit diaphragms and show fibrotic glomeruli and cystic tubular lesions. J. Am. Soc. Nephrol. 13, 1586–1594 (2002).

    CAS  PubMed  Google Scholar 

  42. Greka, A. & Mundel, P. Cell biology and pathology of podocytes. Annu. Rev. Physiol. 74, 299–323 (2012).

    CAS  PubMed  Google Scholar 

  43. Welsh, G.I. & Saleem, M.A. The podocyte cytoskeleton—key to a functioning glomerulus in health and disease. Nat. Rev. Nephrol. 8, 14–21 (2012).

    CAS  Google Scholar 

  44. Giannico, G., Yang, H., Neilson, E.G. & Fogo, A.B. Dystroglycan in the diagnosis of FSGS. Clin. J. Am. Soc. Nephrol. 4, 1747–1753 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Seibler, J. et al. Single copy shRNA configuration for ubiquitous gene knockdown in mice. Nucleic Acids Res. 33, e67 (2005).

    PubMed  PubMed Central  Google Scholar 

  46. Wang, S. et al. Recipient Toll-like receptors contribute to chronic graft dysfunction by both MyD88- and TRIF-dependent signaling. Dis. Model Mech. 3, 92–103 (2010).

    CAS  PubMed  Google Scholar 

  47. Mundel, P., Reiser, J. & Kriz, W. Induction of differentiation in cultured rat and human podocytes. J. Am. Soc. Nephrol. 8, 697–705 (1997).

    CAS  PubMed  Google Scholar 

  48. Saleem, M.A. et al. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J. Am. Soc. Nephrol. 13, 630–638 (2002).

    CAS  PubMed  Google Scholar 

  49. Grant, G.R. et al. Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics 27, 2518–2528 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kerjaschki, D. et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat. Med. 12, 230–234 (2006).

    CAS  PubMed  Google Scholar 

  51. Michael, A.F., Blau, E. & Vernier, R.L. Glomerular polyanion: alteration in aminonucleoside nephrosis. Lab. Invest. 23, 649–657 (1970).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by E-Rare JTC 2011, European Research Projects on Rare Diseases, Project # I 923-B13 to D.K. and M.J.M. and a grant from the Deutsche Forschungsgemeinschaft (EN 280/8-1) to C.E. We thank A. Fogo (Vanderbilt University), J. Reiser (Rush University Medical Center) and C. Alpers (University of Washington) for sending us paraffin blocks of kidneys from animal models of proteinuria. Immortalized mouse podocytes were a kind gift of P. Mundel (MGH Boston). Immortalized human podocytes were a gift of L. Schaefer, University of Frankfurt. We thank K. Priessner, U. Rothermel, D. Kruspe, S. Krieger, H. Schachner, G. Asfour, I. Raab, M. Volz and A. Jäger for expert technical assistance and A. Rees for critical reading of the manuscript. Cell sorting was performed by A. Spittler and G. Hofbauer from the Core Facility Cell Sorting, Medical University of Vienna.

Author information

Authors and Affiliations

Authors

Contributions

D.K., C.A.G. and J.M. conceived the project. C.A.G. and D.K. designed the experiments and wrote the paper. C.A.G. and C.K. performed the experiments related to miR-193a. S.T. and M.B. performed the RNA-Seq analysis. C.K., G.A.B., R.K. and M.J.M. selected the human samples. C.E., H.-J.G., L.D. and R.S. generated and characterized the conditional WT1 knockout mouse. J.S. and M.R. generated the inducible miR-193a transgenic mouse. S.W. and H.-J.G. performed the kidney transplantation.

Corresponding author

Correspondence to Dontscho Kerjaschki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 2–4 (PDF 1046 kb)

Supplementary Table 1

Genes regulated in isolated mouse glomeruli upon miR-193a (XLS 9235 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebeshuber, C., Kornauth, C., Dong, L. et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat Med 19, 481–487 (2013). https://doi.org/10.1038/nm.3142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing