Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Macrophages support pathological erythropoiesis in polycythemia vera and β-thalassemia

Abstract

Regulation of erythropoiesis is achieved by the integration of distinct signals. Among them, macrophages are emerging as erythropoietin-complementary regulators of erythroid development, particularly under stress conditions. We investigated the contribution of macrophages to physiological and pathological conditions of enhanced erythropoiesis. We used mouse models of induced anemia, polycythemia vera and β-thalassemia in which macrophages were chemically depleted. Our data indicate that macrophages contribute decisively to recovery from induced anemia, as well as the pathological progression of polycythemia vera and β-thalassemia, by modulating erythroid proliferation and differentiation. We validated these observations in primary human cultures, showing a direct impact of macrophages on the proliferation and enucleation of erythroblasts from healthy individuals and patients with polycythemia vera or β-thalassemia. The contribution of macrophages to stress and pathological erythropoiesis, which we have termed stress erythropoiesis macrophage-supporting activity, may have therapeutic implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: WT mice depleted of macrophages have impaired recovery from induced anemia.
Figure 2: Clodronate treatment reverses pathological features of a mouse model of polycythemia vera.
Figure 3: Improvement of anemia and ineffective erythropoiesis in Hbbth3/+ mice 40 h after a single administration of clodronate.
Figure 4: Chronic clodronate administration improves anemia, ineffective erythropoiesis and RBC phenotypes in Hbbth3/+ mice.
Figure 5: Human macrophages promote proliferation and limit differentiation of primary human erythroblasts.
Figure 6: Model of macrophage function in normal and pathological erythropoiesis.

Similar content being viewed by others

References

  1. Tsiftsoglou, A.S., Vizirianakis, I.S. & Strouboulis, J. Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life 61, 800–830 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Sathyanarayana, P. et al. EPO receptor circuits for primary erythroblast survival. Blood 111, 5390–5399 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wojchowski, D.M. et al. Erythropoietin-dependent erythropoiesis: new insights and questions. Blood Cells Mol. Dis. 36, 232–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Wu, H., Klingmuller, U., Besmer, P. & Lodish, H.F. Interaction of the erythropoietin and stem-cell-factor receptors. Nature 377, 242–246 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Miyagawa, S., Kobayashi, M., Konishi, N., Sato, T. & Ueda, K. Insulin and insulin-like growth factor I support the proliferation of erythroid progenitor cells in bone marrow through the sharing of receptors. Br. J. Haematol. 109, 555–562 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Shaked, Y. et al. The splenic microenvironment is a source of proangiogenesis/inflammatory mediators accelerating the expansion of murine erythroleukemic cells. Blood 105, 4500–4507 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cerdan, C., Rouleau, A. & Bhatia, M. VEGF-A165 augments erythropoietic development from human embryonic stem cells. Blood 103, 2504–2512 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Cervi, D. et al. Enhanced natural-killer cell and erythropoietic activities in VEGF-A–overexpressing mice delay F-MuLV–induced erythroleukemia. Blood 109, 2139–2146 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lenox, L.E., Perry, J.M. & Paulson, R.F. BMP4 and Madh5 regulate the erythroid response to acute anemia. Blood 105, 2741–2748 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Porayette, P. & Paulson, R.F. BMP4/Smad5 dependent stress erythropoiesis is required for the expansion of erythroid progenitors during fetal development. Dev. Biol. 317, 24–35 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Millot, S. et al. Erythropoietin stimulates spleen BMP4-dependent stress erythropoiesis and partially corrects anemia in a mouse model of generalized inflammation. Blood 116, 6072–6081 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Bessis, M. [Erythroblastic island, functional unity of bone marrow.]. Rev. Hematol. 13, 8–11 (1958).

    CAS  PubMed  Google Scholar 

  13. Chasis, J.A. & Mohandas, N. Erythroblastic islands: niches for erythropoiesis. Blood 112, 470–478 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Soni, S. et al. Absence of erythroblast macrophage protein (Emp) leads to failure of erythroblast nuclear extrusion. J. Biol. Chem. 281, 20181–20189 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Yoshida, H. et al. Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature 437, 754–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Seki, M. & Shirasawa, H. Role of the reticular cells during maturation process of the erythroblast. 3. The fate of phagocytized nucleus. Acta Pathol. Jpn. 15, 387–405 (1965).

    CAS  PubMed  Google Scholar 

  17. Sadahira, Y. et al. Impaired splenic erythropoiesis in phlebotomized mice injected with CL2MDP-liposome: an experimental model for studying the role of stromal macrophages in erythropoiesis. J. Leukoc. Biol. 68, 464–470 (2000).

    CAS  PubMed  Google Scholar 

  18. Liu, X.S. et al. Disruption of palladin leads to defects in definitive erythropoiesis by interfering with erythroblastic island formation in mouse fetal liver. Blood 110, 870–876 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Giuliani, A.L. et al. Aging of red blood cells and impaired erythropoiesis following prolonged administration of dichloromethylene diphosphonate containing liposomes in rats. Eur. J. Haematol. 75, 406–416 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Hanspal, M. & Hanspal, J.S. The association of erythroblasts with macrophages promotes erythroid proliferation and maturation: a 30-kD heparin-binding protein is involved in this contact. Blood 84, 3494–3504 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Giuliani, A.L. et al. Changes in murine bone marrow macrophages and erythroid burst-forming cells following the intravenous injection of liposome-encapsulated dichloromethylene diphosphonate (Cl2MDP). Eur. J. Haematol. 66, 221–229 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Rhodes, M.M., Kopsombut, P., Bondurant, M.C., Price, J.O. & Koury, M.J. Adherence to macrophages in erythroblastic islands enhances erythroblast proliferation and increases erythrocyte production by a different mechanism than erythropoietin. Blood 111, 1700–1708 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fabriek, B.O. et al. The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor. Blood 109, 5223–5229 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Ulyanova, T., Jiang, Y., Padilla, S., Nakamoto, B. & Papayannopoulou, T. Combinatorial and distinct roles of α and α integrins in stress erythropoiesis in mice. Blood 117, 975–985 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Angelillo-Scherrer, A. et al. Role of Gas6 in erythropoiesis and anemia in mice. J. Clin. Invest. 118, 583–596 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Paulson, R.F., Shi, L. & Wu, D.C. Stress erythropoiesis: new signals and new stress progenitor cells. Curr. Opin. Hematol. 18, 139–145 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ramos, P. et al. Enhanced erythropoiesis in Hfe-KO mice indicates a role for Hfe in the modulation of erythroid iron homeostasis. Blood 117, 1379–1389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Longmore, G.D. A unique role for Stat5 in recovery from acute anemia. J. Clin. Invest. 116, 626–628 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Menon, M.P. et al. Signals for stress erythropoiesis are integrated via an erythropoietin receptor-phosphotyrosine-343-Stat5 axis. J. Clin. Invest. 116, 683–694 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Socolovsky, M. Molecular insights into stress erythropoiesis. Curr. Opin. Hematol. 14, 215–224 (2007).

    Article  PubMed  Google Scholar 

  31. Vemula, S. et al. Essential role for focal adhesion kinase in regulating stress hematopoiesis. Blood 116, 4103–4115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baxter, E.J. et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365, 1054–1061 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. James, C. et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434, 1144–1148 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Kralovics, R. et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 352, 1779–1790 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Levine, R.L. et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7, 387–397 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Levine, R.L. & Gilliland, D.G. Myeloproliferative disorders. Blood 112, 2190–2198 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ginzburg, Y. & Rivella, S. β-thalassemia: a model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism. Blood 118, 4321–4330 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rivella, S. Ineffective erythropoiesis and thalassemias. Curr. Opin. Hematol. 16, 187–194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Libani, I.V. et al. Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in β-thalassemia. Blood 112, 875–885 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mullally, A. et al. Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell 17, 584–596 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tiedt, R. et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 111, 3931–3940 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Pardanani, A. et al. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia 21, 1658–1668 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Santos, F.P. & Verstovsek, S. JAK2 inhibitors: what's the true therapeutic potential? Blood Rev. 25, 53–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Verstovsek, S. Therapeutic potential of JAK2 inhibitors. Hematology Am. Soc. Hematol. Educ. Program 2009, 636–642 (2009).

    Article  Google Scholar 

  45. Melchiori, L., Gardenghi, S. & Rivella, S. βeta-thalassemia: hiJAKing ineffective erythropoiesis and iron overload. Adv. Hematol. 2010, 938640 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Van Rooijen, N. & Sanders, A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J. Immunol. Methods 174, 83–93 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Chow, A. et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208, 261–271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sadahira, Y., Yoshino, T. & Monobe, Y. Very late activation antigen 4-vascular cell adhesion molecule 1 interaction is involved in the formation of erythroblastic islands. J. Exp. Med. 181, 411–415 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Hentze, M.W., Muckenthaler, M.U., Galy, B. & Camaschella, C. Two to tango: regulation of mammalian iron metabolism. Cell 142, 24–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Ciavatta, D.J., Ryan, T.M., Farmer, S.C. & Townes, T.M. Mouse model of human β zero thalassemia: targeted deletion of the mouse β maj- and β min-globin genes in embryonic stem cells. Proc. Natl. Acad. Sci. USA 92, 9259–9263 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gardenghi, S. et al. Hepcidin as a therapeutic tool to limit iron overload and improve anemia in β-thalassemic mice. J. Clin. Invest. 120, 4466–4477 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, H. et al. Transferrin therapy ameliorates disease in β-thalassemic mice. Nat. Med. 16, 177–182 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Ramos, E. et al. Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice. Hepatology 53, 1333–1341 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Ramos, E. et al. Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis. Blood 120, 3829–3836 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pollard, J.W. Trophic macrophages in development and disease. Nat. Rev. Immunol. 9, 259–270 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Richmond, T.D., Chohan, M. & Barber, D.L. Turning cells red: signal transduction mediated by erythropoietin. Trends Cell Biol. 15, 146–155 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Chow, A. et al. CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat. Med. advance online publication, 10.1038/nm.3057 (17 March 2013).

  58. de Boer, J. et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur. J. Immunol. 33, 314–325 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Lesbordes-Brion, J.C. et al. Targeted disruption of the hepcidin 1 gene results in severe hemochromatosis. Blood 108, 1402–1405 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Gardenghi, S. et al. Ineffective erythropoiesis in β-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. Blood 109, 5027–5035 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sorensen, S., Rubin, E., Polster, H., Mohandas, N. & Schrier, S. The role of membrane skeletal-associated α-globin in the pathophysiology of β-thalassemia. Blood 75, 1333–1336 (1990).

    Article  CAS  PubMed  Google Scholar 

  62. Kong, Y. et al. Loss of α-hemoglobin–stabilizing protein impairs erythropoiesis and exacerbates β-thalassemia. J. Clin. Invest. 114, 1457–1466 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. de Sousa and the members of the Pasta and Red Cells Society of New York for technical support and helpful discussions. In addition, we thank T. Ganz and E. Nemeth (University of California Los Angeles), R. Fleming (St. Louis University), C. Enns (Oregon Health and Science University) and N. Mohandas and Y. Ginzburg (New York Blood Center) for their very valuable expertise on iron metabolism and erythropoiesis and helpful discussions. This work was supported by the US National Institutes of Health (NIDDK-1R01DK090554 and NIDDK-1R01DK095112), FP7-HEALTH-2012-INNOVATION from the European Community, Rofar (The Roche Foundation for Anemia Research) and the Children's Cancer and Blood Foundation (S.R.), the American Portuguese biomedical research fund (APBRF, USA)/Inova grant (P.R.) and the Fundacao para a Ciencia e Tecnologia, Portugal (P.R., fellowship SFRH/BD/24813/2005). Hamp knockout mice were a gift from S. Vaulont (Institut National de la Santé et de la Recherche Médicale), S. Rivera and T. Ganz (University of California Los Angeles).

Author information

Authors and Affiliations

Authors

Contributions

P.R. collected and analyzed the data, designed the experiments and wrote the manuscript. C.C. conducted the experiments, analyzed data and revised the manuscript. S. Gardenghi, L.B., R.G. and B.J.C. conducted the experiments, analyzed data and reviewed the manuscript. E.G. and M.F.M. maintained the mouse colony and performed animal experiments. R.L.L. and O.A.-W. provided mice with polycythemia vera and samples from humans with polycythemia vera and reviewed the manuscript. B.L.E. developed and provided the mice with polycythemia vera and reviewed the manuscript. N.V.R. provided clodronate liposomes and reviewed the manuscript. S. Ghaffari contributed vital reagents and reviewed the manuscript. R.W.G. reviewed the manuscript. P.J.G. collected and provided human samples and reviewed the manuscript. S.R. designed the experiments, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Stefano Rivella.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–23 (PDF 7050 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, P., Casu, C., Gardenghi, S. et al. Macrophages support pathological erythropoiesis in polycythemia vera and β-thalassemia. Nat Med 19, 437–445 (2013). https://doi.org/10.1038/nm.3126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing