Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pten inactivation alters peripheral B lymphocyte fate and reconstitutes CD19 function

Abstract

Phosphoinositide 3-kinase (PI3K) and phosphatase and tensin homolog (PTEN) phosphatase serve essential functions in the regulation of cell growth, differentiation and survival by modulating intracellular phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P3) concentrations. Here we show that the conditional deletion of Pten in B cells led to the preferential generation of marginal zone (MZ) B cells and B1 cells. PTEN-deficient B cells were hyperproliferative in response to mitogenic stimuli, and exhibited a lower threshold for activation through the B cell antigen receptor. Inactivation of PTEN rescued germinal center, MZ B and B1 cell formation in CD19−/− mice, arguing that recruitment and activation of PI3K are the dominant roles for CD19 in these B cell subpopulations. These findings establish the central role of PI-3,4,5-P3 regulation in the differentiation of peripheral B cell subsets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of Cd19Cre+/−PtenloxP/loxP mice.
Figure 2: Altered B cell differentiation in Cd19Cre+/−PtenloxP/loxP mice.
Figure 3: Impaired migration, increased basal Rac activity and intact adhesion of PTEN-deficient splenic B cells.
Figure 4: Enhanced Akt activation and in vitro proliferation of PTEN-deficient splenic B cells.
Figure 5: Altered cell cycle progression and survival of PTEN-deficient B cells.
Figure 6: Restoration of MZ B cells, B1 and GC formation in Cd19Cre−/−PtenloxP/loxP mice.

Similar content being viewed by others

References

  1. Martin, F., Oliver, A.M. & Kearney, J.F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14, 617–629 (2001).

    Article  CAS  Google Scholar 

  2. Berland, R. & Wortis, H.H. Origins and functions of B-1 cells with notes on the role of CD5. Annu. Rev. Immunol. 20, 253–300 (2002).

    Article  CAS  Google Scholar 

  3. Fruman, D.A., Satterthwaite, A.B. & Witte, O.N. Xid-like phenotypes: a B cell signalosome takes shape. Immunity 13, 1–3 (2000).

    Article  CAS  Google Scholar 

  4. Turner, M. & Billadeau, D.D. VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Nat. Rev. Immunol. 2, 476–486 (2002).

    Article  CAS  Google Scholar 

  5. Anderson, K.E., Coadwell, J., Stephens, L.R. & Hawkins, P.T. Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B. Curr. Biol. 8, 684–691 (1998).

    Article  CAS  Google Scholar 

  6. Fruman, D.A. & Cantley, L.C. Phosphoinositide 3-kinase in immunological systems. Semin. Immunol. 14, 7–18 (2002).

    Article  CAS  Google Scholar 

  7. Fruman, D.A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    Article  CAS  Google Scholar 

  8. Suzuki, H. et al. Xid-like immunodeficiency in mice with disruption of the p85α subunit of phosphoinositide 3-kinase. Science 283, 390–392 (1999).

    Article  CAS  Google Scholar 

  9. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  Google Scholar 

  10. Clayton, E. et al. A crucial role for the p110δ subunit of phosphatidylinositol 3-kinase in B cell development and activation. J. Exp. Med. 196, 753–763 (2002).

    Article  CAS  Google Scholar 

  11. Tuveson, D.A., Carter, R.H., Soltoff, S.P. & Fearon, D.T. CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3-kinase. Science 260, 986–989 (1993).

    Article  CAS  Google Scholar 

  12. Wang, Y. et al. The physiologic role of CD19 cytoplasmic tyrosines. Immunity 17, 501–514 (2002).

    Article  CAS  Google Scholar 

  13. Buhl, A.M., Pleiman, C.M., Rickert, R.C. & Cambier, J.C. Qualitative regulation of B cell antigen receptor signaling by CD19: selective requirement for PI3-kinase activation, inositol-1,4,5-trisphosphate production and Ca2+ mobilization. J. Exp. Med. 186, 1897–1910 (1997).

    Article  CAS  Google Scholar 

  14. Buhl, A.M. & Cambier, J.C. Phosphorylation of CD19 Y484 and Y515, and linked activation of phosphatidylinositol 3-kinase, are required for B cell antigen receptor-mediated activation of Bruton's tyrosine kinase. J. Immunol. 162, 4438–4446 (1999).

    CAS  PubMed  Google Scholar 

  15. Otero, D.C., Omori, S.A. & Rickert, R.C. CD19-dependent activation of Akt kinase in B-lymphocytes. J. Biol. Chem. 276, 1474–1478 (2001).

    Article  CAS  Google Scholar 

  16. Fujimoto, M. et al. Complementary roles for CD19 and Bruton's tyrosine kinase in B lymphocyte signal transduction. J. Immunol. 168, 5465–5476 (2002).

    Article  CAS  Google Scholar 

  17. Engel, P. et al. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 3, 39–50 (1995).

    Article  CAS  Google Scholar 

  18. Rickert, R.C., Rajewsky, K. & Roes, J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 376, 352–355 (1995).

    Article  CAS  Google Scholar 

  19. Martin, F. & Kearney, J.F. Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and btk. Immunity 12, 39–49 (2000).

    Article  CAS  Google Scholar 

  20. Rameh, L.E. & Cantley, L.C. The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. 274, 8347–8350 (1999).

    Article  CAS  Google Scholar 

  21. Leslie, N.R. & Downes, C.P. PTEN: the down side of PI 3-kinase signalling. Cell. Signal. 14, 285–295 (2002).

    Article  CAS  Google Scholar 

  22. Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998).

    Article  CAS  Google Scholar 

  23. Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294, 2186–2189 (2001).

    Article  CAS  Google Scholar 

  24. Lesche, R. et al. Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 32, 148–149 (2002).

    Article  CAS  Google Scholar 

  25. Rickert, R.C., Roes, J. & Rajewsky, K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 25, 1317–1318 (1997).

    Article  CAS  Google Scholar 

  26. Rickert, P., Weiner, O.D., Wang, F., Bourne, H.R. & Servant, G. Leukocytes navigate by compass: roles of PI3Kγ and its lipid products. Trends Cell. Biol. 10, 466–473 (2000).

    Article  CAS  Google Scholar 

  27. Cariappa, A. et al. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity 14, 603–615 (2001).

    Article  CAS  Google Scholar 

  28. Lu, T.T. & Cyster, J.G. Integrin-mediated long-term B cell retention in the splenic marginal zone. Science 297, 409–412 (2002).

    Article  CAS  Google Scholar 

  29. Oliver, A.M., Martin, F., Gartland, G.L., Carter, R.H. & Kearney, J.F. Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur. J. Immunol. 27, 2366–2374 (1997).

    Article  CAS  Google Scholar 

  30. Jones, S.M. & Kazlauskas, A. Growth-factor-dependent mitogenesis requires two distinct phases of signalling. Nat. Cell Biol. 3, 165–172 (2001).

    Article  CAS  Google Scholar 

  31. Fearon, D.T. & Carroll, M.C. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu. Rev. Immunol. 18, 393–422 (2000).

    Article  CAS  Google Scholar 

  32. Beitz, L.O., Fruman, D.A., Kurosaki, T., Cantley, L.C. & Scharenberg, A.M. SYK is upstream of phosphoinositide 3-kinase in B cell receptor signaling. J. Biol. Chem. 274, 32662–32666 (1999).

    Article  CAS  Google Scholar 

  33. Kurosaki, T. Regulation of B-cell signal transduction by adaptor proteins. Nat. Rev. Immunol. 2, 354–363 (2002).

    Article  CAS  Google Scholar 

  34. Okada, T., Maeda, A., Iwamatsu, A., Gotoh, K. & Kurosaki, T. BCAP: the tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity 13, 817–827 (2000).

    Article  CAS  Google Scholar 

  35. Yamazaki, T. et al. Essential immunoregulatory role for BCAP in B cell development and function. J. Exp. Med. 195, 535–545 (2002).

    Article  CAS  Google Scholar 

  36. Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R.A. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–623 (2002).

    Article  CAS  Google Scholar 

  37. Iijima, M. & Devreotes, P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109, 599–610 (2002).

    Article  CAS  Google Scholar 

  38. Giancotti, F.G. & Ruoslahti, E. Integrin signaling. Science 285, 1028–1032 (1999).

    Article  CAS  Google Scholar 

  39. Reiske, H.R. et al. Requirement of phosphatidylinositol 3-kinase in focal adhesion kinase-promoted cell migration. J. Biol. Chem. 274, 12361–12366 (1999).

    Article  CAS  Google Scholar 

  40. Klingbeil, C.K. et al. Targeting Pyk2 to β 1-integrin-containing focal contacts rescues fibronectin-stimulated signaling and haptotactic motility defects of focal adhesion kinase-null cells. J. Cell. Biol. 152, 97–110 (2001).

    Article  CAS  Google Scholar 

  41. Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J.V. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nat. Immunol. 1, 31–36 (2000).

    Article  CAS  Google Scholar 

  42. Lam, E.W. et al. Cyclin D3 compensates for loss of cyclin D2 in mouse B-lymphocytes activated via the antigen receptor and CD40. J. Biol. Chem. 275, 3479–3484 (2000).

    Article  CAS  Google Scholar 

  43. Solvason, N. et al. Cyclin D2 is essential for BCR-mediated proliferation and CD5 B cell development. Int. Immunol. 12, 631–638 (2000).

    Article  CAS  Google Scholar 

  44. Glassford, J. et al. Vav is required for cyclin D2 induction and proliferation of mouse B lymphocytes activated via the antigen receptor. J. Biol. Chem. 276, 41040–41048 (2001).

    Article  CAS  Google Scholar 

  45. Su, T.T. & Rawlings, D.J. Transitional B lymphocyte subsets operate as distinct checkpoints in murine splenic B cell development. J. Immunol. 168, 2101–2110 (2002).

    Article  CAS  Google Scholar 

  46. Schwartz, M.A. & Assoian, R.K. Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J. Cell. Sci. 114, 2553–2560 (2001).

    CAS  PubMed  Google Scholar 

  47. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  Google Scholar 

  48. Kops, G.J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).

    Article  CAS  Google Scholar 

  49. Medema, R.H., Kops, G.J., Bos, J.L. & Burgering, B.M. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000).

    Article  CAS  Google Scholar 

  50. Blain, S.W. & Massague, J. Breast cancer banishes p27 from nucleus. Nat. Med. 8, 1076–1078 (2002).

    Article  CAS  Google Scholar 

  51. del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687–689 (1997).

    Article  CAS  Google Scholar 

  52. Helgason, C.D. et al. A dual role for Src homology 2 domain-containing inositol-5-phosphatase (SHIP) in immunity: aberrant development and enhanced function of B lymphocytes in SHIP−/− mice. J. Exp. Med. 191, 781–794 (2000).

    Article  CAS  Google Scholar 

  53. Brauweiler, A. et al. Differential regulation of B cell development, activation, and death by the Src homology 2 domain-containing 5′ inositol phosphatase (SHIP). J. Exp. Med. 191, 1545–1554 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Bokoch (The Scripps Research Institute) for providing anti-Rac1, Rac2 antisera; M. David for discussions and members of the Rickert lab for critical evaluation of the manuscript. Supported by National Institutes of Health Grant AI41649 (to R.C.R.) and by a grant from the University of California Cancer Research Coordinating Committee (to R.C.R.). A.N.A. was supported by the Cell, Molecular and Genetic Training Program Grant (NIH, GM07246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Rickert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anzelon, A., Wu, H. & Rickert, R. Pten inactivation alters peripheral B lymphocyte fate and reconstitutes CD19 function. Nat Immunol 4, 287–294 (2003). https://doi.org/10.1038/ni892

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni892

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing