Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency

Abstract

Clearance of recruited immune cells is necessary to resolve inflammatory reactions. We show here that matrix metalloproteinase 2 (MMP2), as part of an interleukin 13 (IL-13)–dependent regulatory loop, dampens inflammation by promoting the egress of inflammatory cells into the airway lumen. MMP2−/− mice showed a robust asthma phenotype and increased susceptibility to asphyxiation induced by allergens. However, whereas the lack of MMP2 reduced the influx of cells into bronchoalveolar lavage (BAL), numerous inflammatory cells accumulated in the lung parenchyma. BAL of MMP2−/− mice lacked normal chemotactic activity, whereas lung inflammatory cells from the same mice showed appropriate chemotactic responses. Thus, MMP2 establishes the chemotactic gradient required for egression of lung inflammatory cells and prevention of lethal asphyxiation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: OVA challenge of BALB/c mice induces a robust asthma phenotype and increased MMP2 activity in BAL.
Figure 2: Lung MMP2 is expressed in the presence of allergic inflammation and IL-13.
Figure 3: Effect of MMP inhibition on AHR and BAL cell egression.
Figure 4: Comparison of GM6001 treatment to MMP2 deficiency.
Figure 5: MMP2−/− mice aberrantly accumulate TH2 cytokine mRNA in the lung and show increased susceptibility to lethal asphyxiation.
Figure 6: Aberrant chemotaxis of lung inflammatory cells in response to MMP2−/− BAL.

Similar content being viewed by others

References

  1. Barnes, P. J. Pathophysiology of asthma. Br. J. Clin. Pharmacol. 42, 3–10 (1996).

    Article  CAS  Google Scholar 

  2. Coyle, A. J. et al. Interleukin-4 is required for the induction of lung Th2 mucosal immunity. Am. J. Respir. Cell Mol. Biol. 13, 54–59 (1995).

    Article  CAS  Google Scholar 

  3. Corry, D. B. et al. Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J. Exp. Med. 183, 109–117 (1996).

    Article  CAS  Google Scholar 

  4. Foster, P. S., Hogan, S. P., Ramsay, A. J., Matthaei, K. I. & Young, I. G. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J. Exp. Med. 183, 195–201 (1996).

    Article  CAS  Google Scholar 

  5. Corry, D. B. et al. Requirements for allergen- induced airway hyperreactivity in T and B cell– deficient mice. Mol. Med. 4, 344–355 (1998).

    Article  CAS  Google Scholar 

  6. Robinson, D. S. et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med. 326, 298–304 (1992).

    Article  CAS  Google Scholar 

  7. Barnes, P. J. & Page, C. Mediators of asthma: a new series. Pulm. Pharmacol. Ther. 14, 1–2 (2001).

    Article  CAS  Google Scholar 

  8. Swain, S. L., Weinberg, A. D., English, M. & Huston, G. IL-4 directs the development of Th2-like helper effectors. J. Immunol. 145, 3796–3806 (1990).

    CAS  PubMed  Google Scholar 

  9. Kopf, M. et al. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature 362, 245–248 (1993).

    Article  CAS  Google Scholar 

  10. Finkelman, F. D. et al. IL-4 is required to generate and sustain in vivo IgE responses. J. Immunol. 141, 2335–2341 (1988).

    CAS  PubMed  Google Scholar 

  11. Murata, T., Obiri, N. I., Debinski, W. & Puri, R. K. Structure of IL-13 receptor: analysis of subunit composition in cancer and immune cells. Biochem. Biophys. Res. Commun. 238, 90–94 (1997).

    Article  CAS  Google Scholar 

  12. Miloux, B. et al. Cloning of the human IL-13Rα chain and reconstitution with the IL4Rα of a functional IL-4/IL-13 receptor complex. FEBS Lett. 401, 163–166 (1997).

    Article  CAS  Google Scholar 

  13. Hilton, D. J. et al. Cloning and characterization of a binding subunit of the interleukin 13 receptor that is also a component of the interleukin 4 receptor. Proc. Natl Acad. Sci. USA 93, 497–501 (1996).

    Article  CAS  Google Scholar 

  14. Grunig, G. et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282, 2261–2263 (1998).

    Article  CAS  Google Scholar 

  15. Corry, D. B. IL-13 in allergy: home at last. Curr. Opin. Immunol. 11, 610–614 (1999).

    Article  CAS  Google Scholar 

  16. Doucet, C. et al. Interleukin (IL) 4 and IL-13 act on human lung fibroblasts. Implication in asthma. J. Clin. Invest. 101, 2129–2139 (1998).

    Article  CAS  Google Scholar 

  17. Becky Kelly, E. A., Busse, W. W. & Jarjour, N. N. Increased matrix metalloproteinase-9 in the airway after allergen challenge. Am. J. Resp. Crit. Care Med. 162, 1157–1161 (2000).

    Article  Google Scholar 

  18. Zheng, T. et al. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J. Clin. Invest. 106, 1081–1093 (2000).

    Article  CAS  Google Scholar 

  19. Kumagai, K. et al. Inhibition of matrix metalloproteinases prevents allergen-induced airway inflammation in a murine model of asthma. J. Immunol. 162, 4212–4219 (1999).

    CAS  PubMed  Google Scholar 

  20. Holla, L. I., Vasku, A., Stejskalova, A. & Znojil, V. Functional polymorphism in the gelatinase B gene and asthma. Allergy 55, 900–901 (2000).

    Article  CAS  Google Scholar 

  21. Cataldo, D. et al. MMP2- and MMP-9-linked gelatinolytic activity in the sputum from patients with asthma and chronic obstructive pulmonary disease. Int. Arch. Allergy Immunol. 123, 259–267 (2000).

    Article  CAS  Google Scholar 

  22. Haas, T. L. & Madri, J. A. Extracellular matrix-driven matrix metalloproteinase production in endothelial cells: implications for angiogenesis. Trends Cardiovasc. Med. 9, 70–77 (1999).

    Article  CAS  Google Scholar 

  23. Madri, J. A., Graesser, D. & Haas, T. The roles of adhesion molecules and proteinases in lymphocyte transendothelial migration. Biochem. Cell Biol. 74, 749–757 (1996).

    Article  CAS  Google Scholar 

  24. Goldstein, R. A., Paul, W. E., Metcalfe, D. D., Busse, W. W. & Reece, E. R. NIH conference. Asthma. Ann. Intern. Med. 121, 698–708 (1994).

    Article  CAS  Google Scholar 

  25. Galardy, R. E., Grobelny, D., Foellmer, H. G. & Fernandez, L. A. Inhibition of angiogenesis by the matrix metalloprotease inhibitor N-[2R-2-(hydroxamidocarbonymethyl)-4-methylpentanoyl)]-l-tryptophan methylamide. Cancer Res. 54, 4715–4718 (1994).

    CAS  PubMed  Google Scholar 

  26. Itoh, T. et al. Unaltered secretion of β-amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice. J. Biol. Chem. 272, 22389–22392 (1997).

    Article  CAS  Google Scholar 

  27. Grunig, G. et al. Interleukin-10 is a natural suppressor of cytokine production and inflammation in a murine model of allergic bronchopulmonary aspergillosis. J. Exp. Med. 185, 1089–1099 (1997).

    Article  CAS  Google Scholar 

  28. Baggiolini, M. Reflections on chemokines. Immunol. Rev. 177, 5–7 (2000).

    Article  CAS  Google Scholar 

  29. Mathew, A. et al. Signal transducer and activator of transcription 6 controls chemokine production and T helper cell type 2 cell trafficking in allergic pulmonary inflammation. J. Exp. Med. 193, 1087–1096 (2001).

    Article  CAS  Google Scholar 

  30. Lilly, C. M. et al. Eotaxin expression after segmental allergen challenge in subjects with atopic asthma. Am. J. Respir. Crit. Care Med. 163, 1669–1675 (2001).

    Article  CAS  Google Scholar 

  31. Lamkhioued, B. et al. Increased expression of eotaxin in bronchoalveolar lavage and airways of asthmatics contributes to the chemotaxis of eosinophils to the site of inflammation. J. Immunol. 159, 4593–4601 (1997).

    CAS  PubMed  Google Scholar 

  32. Sears, M. R. Consequences of long-term inflammation. The natural history of asthma. Clin. Chest Med. 21, 315–329 (2000).

    Article  CAS  Google Scholar 

  33. Betsuyaku, T., Shipley, J. M., Liu, Z. & Senior, R. M. Neutrophil emigration in the lungs, peritoneum, and skin does not require gelatinase B. Am. J. Respir. Cell Mol. Biol. 20, 1303–1309 (1999).

    Article  CAS  Google Scholar 

  34. Milik, A. M. et al. Lung lymphocyte elimination by apoptosis in the murine response to intratracheal particulate antigen. J. Clin. Invest. 99, 1082–1091 (1997).

    Article  CAS  Google Scholar 

  35. Savill, J. Apoptosis in resolution of inflammation. Kidney Blood Press. Res. 23, 173–174 (2000).

    CAS  PubMed  Google Scholar 

  36. Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).

    Article  CAS  Google Scholar 

  37. Bancroft, A. J., Artis, D., Donaldson, D. D., Sypek, J. P. & Grencis, R. K. Gastrointestinal nematode expulsion in IL-4 knockout mice is IL-13 dependent. Eur. J. Immunol. 30, 2083–2091 (2000).

    Article  CAS  Google Scholar 

  38. Dubois, G. R. & Bruijnzeel, P. L. IL-4-induced migration of eosinophils in allergic inflammation. Ann NY Acad. Sci. 725, 268–273 (1994).

    Article  CAS  Google Scholar 

  39. Azzawi, M., Johnston, P. W., Majumdar, S., Kay, A. B. & Jeffery, P. K. T lymphocytes and activated eosinophils in airway mucosa in fatal asthma and cystic fibrosis. Am. Rev. Respir. Dis. 145, 1477–1482 (1992).

    Article  CAS  Google Scholar 

  40. Kikuchi, Y. et al. Chemosensitivity and perception of dyspnea in patients with a history of near-fatal asthma. N. Engl. J. Med. 330, 1329–1334 (1994).

    Article  CAS  Google Scholar 

  41. Molfino, N. A., Nannini, L. J., Martelli, A. N. & Slutsky, A. S. Respiratory arrest in near-fatal asthma. N. Engl. J. Med. 324, 285–288 (1991).

    Article  CAS  Google Scholar 

  42. McQuibban, G. A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289, 1202–1206 (2000).

    Article  CAS  Google Scholar 

  43. Okada, S., Kita, H., George, T. J., Gleich, G. J. & Leiferman, K. M. Migration of eosinophils through basement membrane components in vitro: role of matrix metalloproteinase-9. Am. J. Respir. Cell Mol. Biol. 17, 519–528 (1997).

    Article  CAS  Google Scholar 

  44. Reponen, P. et al. Molecular cloning of murine 72-kDa type IV collagenase and its expression during mouse development. J. Biol. Chem. 267, 7856–7862 (1992).

    CAS  PubMed  Google Scholar 

  45. Alexander, C. M. et al. Expression and function of matrix metalloproteinases and their inhibitors at the maternal-embryonic boundary during mouse embryo implantation. Development 122, 1723–1736 (1996).

    CAS  PubMed  Google Scholar 

  46. Chin, J. R. & Werb, Z. Matrix metalloproteinases regulate morphogenesis, migration and remodeling of epithelium, tongue skeletal muscle and cartilage in the mandibular arch. Development 124, 1519–1530 (1997).

    CAS  PubMed  Google Scholar 

  47. Chen, S. et al. In vivo inhibition of CC and CX3C chemokine-induced leukocyte infiltration and attenuation of glomerulonephritis in Wistar-Kyoto (WKY) rats by vMIP-II. J. Exp. Med. 188, 193–198 (1998).

    Article  CAS  Google Scholar 

  48. Wu, J. Y. et al. The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature 410, 948–952 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. C. White and B. Dickey for helpful comments and T. Itoh and S. Itohara for providing the MMP2−/− mice. Supported by the Caroline Weiss Law Fund for Molecular Medicine; National Institutes of Health grants K08 HL03344 and R01 HL69585 (to D. C.), K08 HL03732 and R01 HL64061 (to F. K.); and the Sandler Family Asthma Fund (to Z. W.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David B. Corry or Farrah Kheradmand.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corry, D., Rishi, K., Kanellis, J. et al. Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nat Immunol 3, 347–353 (2002). https://doi.org/10.1038/ni773

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni773

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing