Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells

Abstract

Lymphoid tissue inducer (LTi) cells are associated with early development of lymph nodes and Peyer's patches. We show here that during fetal life the nuclear hormone receptor RORγt is expressed exclusively in and is required for the generation of LTi cells. RORγt+ LTi cells provide essential factors, among which lymphotoxin-α1β2 is necessary but not sufficient for activation of the mesenchyma in lymph node and Peyer's patch anlagen. This early LTi cell–mediated activation of lymph node and Peyer's patch mesenchyma forms the necessary platform for the subsequent development of mature lymphoid tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In the fetus, RORγt is exclusively expressed in LTi cells.
Figure 2: A specific absence of LTi cells in RORγt-deficient fetuses.
Figure 3: Lymph node and Peyer's patch anlagen have high expression of ICAM-1 and VCAM-1.
Figure 4: LTα1β2 is necessary but not sufficient for the induction of lymph node and Peyer's patch development by LTi cells.
Figure 5: LTi cells do not proliferate, but are recruited to lymph node and Peyer's patch anlagen.

Similar content being viewed by others

References

  1. Wigle, J.T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell 98, 769–778 (1999).

    Article  CAS  Google Scholar 

  2. Mebius, R.E., Streeter, P.R., Michie, S., Butcher, E.C. & Weissman, I.L. A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+CD3 cells to colonize lymph nodes. Proc. Natl. Acad. Sci. USA 93, 11019–11024 (1996).

    Article  CAS  Google Scholar 

  3. Mebius, R.E., Rennert, P. & Weissman, I.L. Developing lymph nodes collect CD4+CD3LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7, 493–504 (1997).

    Article  CAS  Google Scholar 

  4. Adachi, S., Yoshida, H., Kataoka, H. & Nishikawa, S. Three distinctive steps in Peyer's patch formation of murine embryo. Int. Immunol. 9, 507–514 (1997).

    Article  CAS  Google Scholar 

  5. Yoshida, H. et al. IL-7 receptor α+ CD3 cells in the embryonic intestine induces the organizing center of Peyer's patches. Int. Immunol. 11, 643–655 (1999).

    Article  CAS  Google Scholar 

  6. Cupedo, T., Kraal, G. & Mebius, R.E. The role of CD45+CD4+CD3 cells in lymphoid organ development. Immunol. Rev. 189, 41–50 (2002).

    Article  CAS  Google Scholar 

  7. Adachi, S. et al. Essential role of IL-7 receptor α in the formation of Peyer's patch anlage. Int. Immunol. 10, 1–6 (1998).

    Article  CAS  Google Scholar 

  8. Finke, D., Acha-Orbea, H., Mattis, A., Lipp, M. & Kraehenbuhl, J. CD4+CD3 cells induce Peyer's patch development: role of α4β1 integrin activation by CXCR5. Immunity 17, 363–373 (2002).

    Article  CAS  Google Scholar 

  9. Fukuyama, S. et al. Initiation of NALT organogenesis is independent of the IL-7R, LTbR, and NIK signaling pathways but requires the Id2 gene and CD3CD4+CD45+ cells. Immunity 17, 31–40 (2002).

    Article  CAS  Google Scholar 

  10. Yoshida, H. et al. Different cytokines induce surface lymphotoxin-αβ on IL-7 receptor a cells that differentially engender lymph nodes and Peyer's patches. Immunity 17, 823–833 (2002).

    Article  CAS  Google Scholar 

  11. Honda, K. et al. Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer's patch organogenesis. J. Exp. Med. 193, 621–630 (2001).

    Article  CAS  Google Scholar 

  12. Rennert, P.D., James, D., Mackay, F., Browning, J.L. & Hochman, P.S. Lymph node genesis is induced by signaling through the lymphotoxin β receptor. Immunity 9, 71–79 (1998).

    Article  CAS  Google Scholar 

  13. De Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264, 703–707 (1994).

    Article  CAS  Google Scholar 

  14. Futterer, A., Mink, K., Luz, A., Kosco-Vilbois, M.H. & Pfeffer, K. The lymphotoxin β receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9, 59–70 (1998).

    Article  CAS  Google Scholar 

  15. Miyawaki, S. et al. A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice. Eur. J. Immunol. 24, 429–434 (1994).

    Article  CAS  Google Scholar 

  16. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    Article  CAS  Google Scholar 

  17. Alcamo, E. et al. Requirement for the NF-κB family member RelA in the development of secondary lymphoid organs. J. Exp. Med. 195, 233–244 (2002).

    Article  CAS  Google Scholar 

  18. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706 (1999).

    Article  CAS  Google Scholar 

  19. Sun, Z. et al. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science 288, 2369–2373 (2000).

    Article  CAS  Google Scholar 

  20. Kurebayashi, S. et al. Retinoid-related orphan receptor γ (RORγ) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc. Natl. Acad. Sci. USA 97, 10132–10137 (2000).

    Article  CAS  Google Scholar 

  21. Medvedev, A., Yan, Z.H., Hirose, T., Giguere, V. & Jetten, A.M. Cloning of a cDNA encoding the murine orphan receptor RZR/RORγ and characterization of its response element. Gene 181, 199–206 (1996).

    Article  CAS  Google Scholar 

  22. He, Y.W., Deftos, M.L., Ojala, E.W. & Bevan, M.J. RORγt, a novel isoform of an orphan receptor, negatively regulates Fas ligand expression and IL-2 production in T cells. Immunity 9, 797–806 (1998).

    Article  CAS  Google Scholar 

  23. Villey, I., de Chasseval, R. & de Villartay, J.P. RORγT, a thymus-specific isoform of the orphan nuclear receptor RORγ/TOR, is up-regulated by signaling through the pre-T cell receptor and binds to the TEA promoter. Eur. J. Immunol. 29, 4072–4080 (1999).

    Article  CAS  Google Scholar 

  24. Medvedev, A., Chistokhina, A., Hirose, T. & Jetten, A.M. Genomic structure and chromosomal mapping of the nuclear orphan receptor RORγ (RORC) gene. Genomics 46, 93–102 (1997).

    Article  CAS  Google Scholar 

  25. Delassus, S., Darche, S., Kourilsky, P. & Cumano, A. Ontogeny of the heavy chain immunoglobulin repertoire in fetal liver and bone marrow. J. Immunol. 160, 3274–3280 (1998).

    CAS  PubMed  Google Scholar 

  26. Guo, J. et al. Regulation of the TCRα repertoire by the survival window of CD4+CD8+ thymocytes. Nat. Immunol. 3, 469–476 (2002).

    Article  Google Scholar 

  27. Luther, S.A., Ansel, K.M. & Cyster, J.G. Overlapping roles of CXCL13, interleukin 7 receptor α and CCR7 ligands in lymph node development. J. Exp. Med. 197, 1191–1198 (2003).

    Article  CAS  Google Scholar 

  28. Ross, G.D. Role of the lectin domain of Mac-1/CR3 (CD11b/CD18) in regulating intercellular adhesion. Immunol. Res. 25, 219–227 (2002).

    Article  CAS  Google Scholar 

  29. Hacker, C. et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat. Immunol. 4, 380–386 (2003).

    Article  CAS  Google Scholar 

  30. Fu, Y.X. & Chaplin, D.D. Development and maturation of secondary lymphoid tissues. Annu. Rev. Immunol. 17, 399–433 (1999).

    Article  CAS  Google Scholar 

  31. Ansel, K.M. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309–314 (2000).

    Article  CAS  Google Scholar 

  32. Forster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).

    Article  CAS  Google Scholar 

  33. Kim, D. et al. Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE. J. Exp. Med. 192, 1467–1478 (2000).

    Article  CAS  Google Scholar 

  34. Korner, H. et al. Distinct roles for lymphotoxin-α and tumor necrosis factor in organogenesis and spatial organization of lymphoid tissue. Eur. J. Immunol. 27, 2600–2609 (1997).

    Article  CAS  Google Scholar 

  35. Neumann, B., Luz, A., Pfeffer, K. & Holzmann, B. Defective Peyer's patch organogenesis in mice lacking the 55-kD receptor for tumor necrosis factor. J. Exp. Med. 184, 259–264 (1996).

    Article  CAS  Google Scholar 

  36. Benezra, R., Davis, R.L., Lockshon, D., Turner, D.L. & Weintraub, H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61, 49–59 (1990).

    Article  CAS  Google Scholar 

  37. Eberl, G. & Littman, D.R. The role of the nuclear hormone receptor RORγt in the development of lymph nodes and Peyer's patches. Immunol. Rev. 195, 81–90 (2003).

    Article  CAS  Google Scholar 

  38. Ohl, L. et al. Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J. Exp. Med. 197, 1199–1204 (2003).

    Article  CAS  Google Scholar 

  39. Mebius, R.E. Organogenesis of lymphoid tissues. Nat. Rev. Immunol. 3, 292–303 (2003).

    Article  CAS  Google Scholar 

  40. Ngo, V.N. et al. Lymphotoxin α/β and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J. Exp. Med. 189, 403–412 (1999).

    Article  CAS  Google Scholar 

  41. Dejardin, E. et al. The lymphotoxin-β receptor induces different patterns of gene expression via two NF-κB pathways. Immunity 17, 525–535 (2002).

    Article  CAS  Google Scholar 

  42. Rennert, P.D., Browning, J.L., Mebius, R., Mackay, F. & Hochman, P.S. Surface lymphotoxin α/β complex is required for the development of peripheral lymphoid organs. J. Exp. Med. 184, 1999–2006 (1996).

    Article  CAS  Google Scholar 

  43. Bachmann, M.F. et al. TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. J. Exp. Med. 189, 1025–1031 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

BLC- and Id2-deficient mice were from J. Cyster (University of California at San Francisco, California) and Y. Yokota (Fukui Medical University, Fukui, Japan), respectively. The fusion protein TNF-R-I–Ig and the mAb AF.H6 were from J. Browning (Biogen). We thank J. Cyster, J. Browning, T. Sparwasser, T. Soos and B. Albrecht for discussions and critical reading of the manuscript. Supported by Swiss National Science Foundation (G.E.) and Howard Hughes Medical Institute (D.R.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gérard Eberl or Dan R Littman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberl, G., Marmon, S., Sunshine, MJ. et al. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 5, 64–73 (2004). https://doi.org/10.1038/ni1022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1022

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing