Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation

A Corrigendum to this article was published on 18 October 2017

This article has been updated

Abstract

Autoinflammatory diseases were first recognized nearly 20 years ago as distinct clinical and immunological entities caused by dysregulation in the innate immune system. Since then, advances in genomic techniques have led to the identification of new monogenic disorders and their corresponding signaling pathways. Here we review these monogenic autoinflammatory diseases, ranging from periodic fever syndromes caused by dysregulated inflammasome-mediated production of the cytokine IL-1β to disorders arising from perturbations in signaling by the transcription factor NF-κB, ubiquitination, cytokine signaling, protein folding, type I interferon production and complement activation, and we further examine their molecular mechanisms. We also explore the overlap among autoinflammation, autoimmunity and immunodeficiency, and pose a series of unanswered questions that are expected to be central in autoinflammatory disease research in the coming decade.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of autoinflammatory diseases mediated by activated inflammasomes and IL-1β-production pathways.
Figure 2: Mechanisms of autoinflammatory diseases mediated by the NF-κB pathway.
Figure 3: Mechanisms of autoinflammatory diseases mediated by the complement pathway.
Figure 4: Mechanisms of autoinflammatory diseases mediated by the type I interferon pathway.

Similar content being viewed by others

Change history

  • 17 August 2017

    In the version of this article initially published, the final sentence of the third paragraph of the first subsection ('Monogenic periodic fever syndromes') incorrectly states that "Colchicine causes microtubule destabilization, thereby facilitating pyrin-inflammasome activation independently of RhoA." That sentence should read: "Colchicine also causes microtubule destabilization, thereby inhibiting pyrin-inflammasome activation independently of RhoA." The error has been corrected in the HTML and PDF versions of the article.

  • 18 October 2017

    Nat. Immunol. 18, 832–842 (2017); published online 19 July 2017; corrected after print 17 August 2017 In the version of this article initially published, the final sentence of the third paragraph of the first subsection ('Monogenic periodic fever syndromes') incorrectly states that “Colchicine causes microtubule destabilization, thereby facilitating pyrin-inflammasome activation independently of RhoA.

References

  1. McDermott, M.F. et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97, 133–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Medzhitov, R. & Janeway, C. Jr. Innate immunity. N. Engl. J. Med. 343, 338–344 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Medzhitov, R. & Janeway, C.A. Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Lamkanfi, M. & Dixit, V.M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014).

    CAS  PubMed  Google Scholar 

  5. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Shi, J., Gao, W. & Shao, F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci. 42, 245–254 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a Gasdermin. Nature http://dx.doi.org/10.1038/nature22393 (2017).

  11. The International FMF Consortium. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90, 797–807 (1997).

  12. French FMF Consortium. A candidate gene for familial Mediterranean fever. Nat. Genet. 17, 25–31 (1997).

  13. Padeh, S. et al. Clinical and diagnostic value of genetic testing in 216 Israeli children with Familial Mediterranean fever. J. Rheumatol. 30, 185–190 (2003).

    PubMed  Google Scholar 

  14. Booty, M.G. et al. Familial Mediterranean fever with a single MEFV mutation: where is the second hit? Arthritis Rheum. 60, 1851–1861 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marek-Yagel, D. et al. Clinical disease among patients heterozygous for familial Mediterranean fever. Arthritis Rheum. 60, 1862–1866 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Lachmann, H.J. et al. Clinical and subclinical inflammation in patients with familial Mediterranean fever and in heterozygous carriers of MEFV mutations. Rheumatology 45, 746–750 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Chae, J.J. et al. Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice. Immunity 34, 755–768 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seshadri, S., Duncan, M.D., Hart, J.M., Gavrilin, M.A. & Wewers, M.D. Pyrin levels in human monocytes and monocyte-derived macrophages regulate IL-1beta processing and release. J. Immunol. 179, 1274–1281 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Yu, J.W. et al. Cryopyrin and pyrin activate caspase-1, but not NF-kappaB, via ASC oligomerization. Cell Death Differ. 13, 236–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Xu, H. et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Park, Y.H., Wood, G., Kastner, D.L. & Chae, J.J. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat. Immunol. 17, 914–921 (2016). References 20 and 21 describe the signaling pathway mediated by RhoA GTPase, PKN1/2 and 14–3-3 proteins in the regulation of the pyrin inflammasome in FMF and HIDS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Masters, S.L. et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci. Transl. Med. 8, 332ra45 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Gao, W., Yang, J., Liu, W., Wang, Y. & Shao, F. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Proc. Natl. Acad. Sci. USA 113, E4857–E4866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Van Gorp, H. et al. Familial Mediterranean fever mutations lift the obligatory requirement for microtubules in Pyrin inflammasome activation. Proc. Natl. Acad. Sci. USA 113, 14384–14389 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Holt, B.F. III., Mackey, D. & Dangl, J.L. Recognition of pathogens by plants. Curr. Biol. 10, R5–R7 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Vance, R.E. Immunology taught by bacteria. J. Clin. Immunol. 30, 507–511 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ratner, D. et al. The Yersinia pestis effector YopM inhibits pyrin inflammasome activation. PLoS Pathog. 12, e1006035 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chung, L.K. et al. The Yersinia virulence factor YopM hijacks host kinases to inhibit type III effector-triggered activation of the pyrin inflammasome. Cell Host Microbe 20, 296–306 (2016). The YopE and YopT proteins from Yersinia inactivate RhoA and lead to pyrin-inflammasome activation, whereas YopM inhibits the pyrin inflammasome. YopM is critical for maintaining the virulence of Yersinia . The authors speculate that FMF-associated mutations may confer protection from Yersinia infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aubert, D.F. et al. A Burkholderia type VI effector deamidates Rho GTPases to activate the pyrin inflammasome and trigger inflammation. Cell Host Microbe 19, 664–674 (2016). TecA, a type VI secretion system effector from Burkholderia cenocepacia , inactivates RhoA and leads to pyrin-inflammasome activation and lung inflammation. TecA promotes survival of mice from B. cenocepcia infection.

    Article  CAS  PubMed  Google Scholar 

  30. Liston, A. & Masters, S.L. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat. Rev. Immunol. 17, 208–214 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Drenth, J.P. et al. Mutations in the gene encoding mevalonate kinase cause hyper-IgD and periodic fever syndrome. Nat. Genet. 22, 178–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Houten, S.M. et al. Mutations in MVK, encoding mevalonate kinase, cause hyperimmunoglobulinaemia D and periodic fever syndrome. Nat. Genet. 22, 175–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Akula, M.K. et al. Control of the innate immune response by the mevalonate pathway. Nat. Immunol. 17, 922–929 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, S.-Q. et al. Exome sequencing identifies MVK mutations in disseminated superficial actinic porokeratosis. Nat. Genet. 44, 1156–1160 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, Y. et al. Identification of three mutations in the MVK gene in six patients associated with disseminated superficial actinic porokeratosis. Clin. Chim. Acta 454, 124–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Hoffman, H.M., Mueller, J.L., Broide, D.H., Wanderer, A.A. & Kolodner, R.D. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome. Nat. Genet. 29, 301–305 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Agostini, L. et al. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Levy, R. et al. Phenotypic and genotypic characteristics of cryopyrin-associated periodic syndrome: a series of 136 patients from the Eurofever Registry. Ann. Rheum. Dis. 74, 2043–2049 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Saito, M. et al. Somatic mosaicism of CIAS1 in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum. 52, 3579–3585 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Saito, M. et al. Disease-associated CIAS1 mutations induce monocyte death, revealing low-level mosaicism in mutation-negative cryopyrin-associated periodic syndrome patients. Blood 111, 2132–2141 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Tanaka, N. et al. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an international multicenter collaborative study. Arthritis Rheum. 63, 3625–3632 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou, Q. et al. Brief report: cryopyrin-associated periodic syndrome caused by a myeloid-restricted somatic NLRP3 mutation. Arthrtis Rheumatol. 67, 2482–2486 (2015).

    Article  CAS  Google Scholar 

  43. Mensa-Vilaro, A. et al. Brief report: late-onset cryopyrin-associated periodic syndrome due to myeloid-restricted somatic NLRP3 mosaicism. Arthritis Rheumatol. 68, 3035–3041 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. de Koning, H.D. et al. Myeloid lineage-restricted somatic mosaicism of NLRP3 mutations in patients with variant Schnitzler syndrome. J. Allergy Clin. Immunol. 135, 561–564 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Loock, J. et al. Genetic predisposition (NLRP3 V198M mutation) for IL-1-mediated inflammation in a patient with Schnitzler syndrome. J. Allergy Clin. Immunol. 125, 500–502 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Lee, G.S. et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492, 123–127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Franchi, L., Muñoz-Planillo, R. & Núñez, G. Sensing and reacting to microbes through the inflammasomes. Nat. Immunol. 13, 325–332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Franchi, L., Kanneganti, T.-D., Dubyak, G.R. & Núñez, G. Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J. Biol. Chem. 282, 18810–18818 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grant, R.W. & Dixit, V.D. Mechanisms of disease: inflammasome activation and the development of type 2 diabetes. Front. Immunol. 4, 50 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lobito, A.A. et al. Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Blood 108, 1320–1327 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Simon, A. et al. Concerted action of wild-type and mutant TNF receptors enhances inflammation in TNF receptor 1-associated periodic fever syndrome. Proc. Natl. Acad. Sci. USA 107, 9801–9806 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bulua, A.C. et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 208, 519–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Williams, K.L. et al. The CATERPILLER protein monarch-1 is an antagonist of toll-like receptor-, tumor necrosis factor alpha-, and Mycobacterium tuberculosis-induced pro-inflammatory signals. J. Biol. Chem. 280, 39914–39924 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Lich, J.D. et al. Monarch-1 suppresses non-canonical NF-kappaB activation and p52-dependent chemokine expression in monocytes. J. Immunol. 178, 1256–1260 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Allen, I.C. et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity 36, 742–754 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jéru, I. et al. Mutations in NALP12 cause hereditary periodic fever syndromes. Proc. Natl. Acad. Sci. USA 105, 1614–1619 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shen, M., Tang, L., Shi, X., Zeng, X. & Yao, Q. NLRP12 autoinflammatory disease: a Chinese case series and literature review. Clin. Rheumatol. http://dx.doi.org/10.1007/s10067-016-3410-y (2016).

  62. Jéru, I. et al. Identification and functional consequences of a recurrent NLRP12 missense mutation in periodic fever syndromes. Arthritis Rheum. 63, 1459–1464 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Borghini, S. et al. Clinical presentation and pathogenesis of cold-induced autoinflammatory disease in a family with recurrence of an NLRP12 mutation. Arthritis Rheum. 63, 830–839 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wise, C.A. et al. Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum. Mol. Genet. 11, 961–969 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Yu, J.W. et al. Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol. Cell 28, 214–227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shoham, N.G. et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc. Natl. Acad. Sci. USA 100, 13501–13506 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Starnes, T.W. et al. The F-BAR protein PSTPIP1 controls extracellular matrix degradation and filopodia formation in macrophages. Blood 123, 2703–2714 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Omenetti, A. et al. Disease activity accounts for long-term efficacy of IL-1 blockers in pyogenic sterile arthritis pyoderma gangrenosum and severe acne syndrome. Rheumatology 55, 1325–1335 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Ferguson, P.J. et al. Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome). J. Med. Genet. 42, 551–557 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Al-Mosawi, Z.S., Al-Saad, K.K., Ijadi-Maghsoodi, R., El-Shanti, H.I. & Ferguson, P.J. A splice site mutation confirms the role of LPIN2 in Majeed syndrome. Arthritis Rheum. 56, 960–964 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Lordén, G. et al. Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation. J. Exp. Med. 214, 511–528 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wen, H., Ting, J.P.Y. & O'Neill, L.A.J. A role for the NLRP3 inflammasome in metabolic diseases: did Warburg miss inflammation? Nat. Immunol. 13, 352–357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mills, E.L., Kelly, B. & O'Neill, L.A.J. Mitochondria are the powerhouses of immunity. Nat. Immunol. 18, 488–498 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Aksentijevich, I. et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N. Engl. J. Med. 360, 2426–2437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Reddy, S. et al. An autoinflammatory disease due to homozygous deletion of the IL1RN locus. N. Engl. J. Med. 360, 2438–2444 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Marrakchi, S. et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 365, 620–628 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Onoufriadis, A. et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am. J. Hum. Genet. 89, 432–437 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gresnigt, M.S. & van de Veerdonk, F.L. Biology of IL-36 cytokines and their role in disease. Semin. Immunol. 25, 458–465 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Maeda, S. et al. Nod2 mutation in Crohn's disease potentiates NF-kappaB activity and IL-1β processing. Science 307, 734–738 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Kobayashi, K.S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Keestra-Gounder, A.M. et al. NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394–397 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Torres, J., Mehandru, S., Colombel, J.-F. & Peyrin-Biroulet, L. Crohn's disease. Lancet 389, 1741–1755 (2017).

    Article  PubMed  Google Scholar 

  83. Sidiq, T., Yoshihama, S., Downs, I. & Kobayashi, K.S. Nod2: a critical regulator of ileal microbiota and Crohn's disease. Front. Immunol. 7, 367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hugot, J.-P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Miceli-Richard, C. et al. CARD15 mutations in Blau syndrome. Nat. Genet. 29, 19–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Strober, W., Murray, P.J., Kitani, A. & Watanabe, T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat. Rev. Immunol. 6, 9–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Kanazawa, N. et al. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood 105, 1195–1197 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Maekawa, S., Ohto, U., Shibata, T., Miyake, K. & Shimizu, T. Crystal structure of NOD2 and its implications in human disease. Nat. Commun. 7, 11813 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mensa-Vilaro, A. et al. Brief report: first identification of intrafamilial recurrence of Blau syndrome due to gonosomal NOD2 mosaicism. Arthritis Rheumatol. 68, 1039–1044 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Jordan, C.T. et al. PSORS2 is due to mutations in CARD14. Am. J. Hum. Genet. 90, 784–795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fuchs-Telem, D. et al. Familial pityriasis rubra pilaris is caused by mutations in CARD14. Am. J. Hum. Genet. 91, 163–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jordan, C.T. et al. Rare and common variants in CARD14, encoding an epidermal regulator of NF-kappaB, in psoriasis. Am. J. Hum. Genet. 90, 796–808 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Van Nuffel, E. et al. CARD14-mediated activation of paracaspase MALT1 in keratinocytes: implications for psoriasis. J. Invest. Dermatol. 137, 569–575 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Glocker, E.-O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Glocker, E.O. et al. Infant colitis: it's in the genes. Lancet 376, 1272 (2010).

    Article  PubMed  Google Scholar 

  97. Kotlarz, D. et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology 143, 347–355 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Shouval, D.S. et al. Interleukin 1β mediates intestinal inflammation in mice and patients with interleukin 10 receptor deficiency. Gastroenterology 151, 1100–1104 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Warwicker, P. et al. Genetic studies into inherited and sporadic hemolytic uremic syndrome. Kidney Int. 53, 836–844 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Maga, T.K., Nishimura, C.J., Weaver, A.E., Frees, K.L. & Smith, R.J. Mutations in alternative pathway complement proteins in American patients with atypical hemolytic uremic syndrome. Hum. Mutat. 31, E1445–E1460 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Noris, M. et al. Familial haemolytic uraemic syndrome and an MCP mutation. Lancet 362, 1542–1547 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Delvaeye, M. et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 361, 345–357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Baines, A.C. & Brodsky, R.A. Complementopathies. Blood Rev. http://dx.doi.org/10.1016/j.blre.2017.02.003 (2017).

  104. Edwards, A.O. et al. Complement factor H polymorphism and age-related macular degeneration. Science 308, 421–424 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Haines, J.L. et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 308, 419–421 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Klein, R.J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Calippe, B. et al. Complement factor H inhibits CD47-mediated resolution of inflammation. Immunity 46, 261–272 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Takeda, J. et al. Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73, 703–711 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. Bessler, M. et al. Paroxysmal nocturnal haemoglobinuria (PNH) is caused by somatic mutations in the PIG-A gene. EMBO J. 13, 110–117 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhou, Q. et al. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am. J. Hum. Genet. 91, 713–720 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chae, J.J. et al. Connecting two pathways through Ca2+ signaling: NLRP3 inflammasome activation induced by a hypermorphic PLCG2 mutation. Arthritis Rheumatol. 67, 563–567 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ombrello, M.J. et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N. Engl. J. Med. 366, 330–338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Canna, S.W. et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 46, 1140–1146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Romberg, N. et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat. Genet. 46, 1135–1139 (2014). References 113 and 114 describe people with gain-of-function mutations in the NLRC4 inflammasome that lead to recurrent MAS and severe enterocolitis. The disease is mediated by IL-1 and IL-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vance, R.E. The NAIP/NLRC4 inflammasomes. Curr. Opin. Immunol. 32, 84–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Kitamura, A., Sasaki, Y., Abe, T., Kano, H. & Yasutomo, K. An inherited mutation in NLRC4 causes autoinflammation in human and mice. J. Exp. Med. 211, 2385–2396 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kawasaki, Y. et al. Identification of a high-frequency somatic NLRC4 mutation as a cause of autoinflammation by pluripotent cell–based phenotype dissection. Arthritis Rheumatol. 69, 447–459 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Zhong, F.L. et al. Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation. Cell 167, 187–202.e17 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Grandemange, S. et al. A new autoinflammatory and autoimmune syndrome associated with NLRP1 mutations: NAIAD (NLRP1-associated autoinflammation with arthritis and dyskeratosis). Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2016-210021 (2016).

  120. Jin, Y. et al. NALP1 in vitiligo-associated multiple autoimmune disease. N. Engl. J. Med. 356, 1216–1225 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Agarwal, A.K. et al. PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am. J. Hum. Genet. 87, 866–872 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kitamura, A.K. et al. A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J. Clin. Invest. 121, 4150–4160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Arima, K. et al. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc. Natl. Acad. Sci. USA 108, 14914–14919 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Liu, Y. et al. Mutations in proteasome subunit β type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum. 64, 895–907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Brehm, A. et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J. Clin. Invest. 125, 4196–4211 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014). De novo mutations in TMEM173 , which encodes an indirect sensor of cytosolic DNA called STING, lead to SAVI. People with SAVI have a prominent type I interferon signature.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Rice, G.I. et al. Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat. Genet. 41, 829–832 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rice, G.I. et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 46, 503–509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rice, G.I. et al. Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat. Genet. 44, 1243–1248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rice, G.I. et al. Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol. 12, 1159–1169 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Crow, Y.J. et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection. Nat. Genet. 38, 910–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Crow, Y.J. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat. Genet. 38, 917–920 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Zhou, Q. et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat. Genet. 48, 67–73 (2016). Haploinsufficiency of A20 is caused by loss-of-function mutations in TNFAIP3 , which encodes the A20 deubiquitinase. Insufficient A20 leads to accumulation of complexes of Lys63-ubiquitinated proteins that activate NF-κB and IL-1β signaling.

    Article  CAS  PubMed  Google Scholar 

  136. Vande Walle, L. et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512, 69–73 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Duong, B.H. et al. A20 restricts ubiquitination of pro-interleukin-1β protein complexes and suppresses NLRP3 inflammasome activity. Immunity 42, 55–67 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zilberman-Rudenko, J. et al. Recruitment of A20 by the C-terminal domain of NEMO suppresses NF-κB activation and autoinflammatory disease. Proc. Natl. Acad. Sci. USA 113, 1612–1617 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhou, Q. et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc. Natl. Acad. Sci. USA 113, 10127–10132 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Damgaard, R.B. et al. The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell 166, 1215–1230.e20 (2016).References 139 and 140 describe people with loss-of-function mutations in the linear deubiquitinase OTULIN and subsequent activation of NF-κB signaling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Boisson, B. et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J. Exp. Med. 212, 939–951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Boisson, B. et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat. Immunol. 13, 1178–1186 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chakraborty, P.K. et al. Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD). Blood 124, 2867–2871 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Standing, A.S. et al. Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. J. Exp. Med. 2041, 59–71 (2017).

    Article  CAS  Google Scholar 

  145. Kim, M.L. et al. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β. J. Exp. Med. 212, 927–938 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zhou, Q. et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N. Engl. J. Med. 370, 911–920 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Navon Elkan, P. et al. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N. Engl. J. Med. 370, 921–931 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Van Montfrans, J.M. et al. Phenotypic variability in patients with ADA2 deficiency due to identical homozygous R169Q mutations. Rheumatology 55, 902–910 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Boyden, S.E. et al. Vibratory urticaria associated with a missense variant in ADGRE2. N. Engl. J. Med. 374, 656–663 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Goldbach-Mansky, R. et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1β inhibition. N. Engl. J. Med. 355, 581–592 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lachmann, H.J. et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N. Engl. J. Med. 360, 2416–2425 (2009). Canakinumab, an anti-IL-1β monoclonal antibody, is shown in this double-blind, placebo-controlled trial to significantly decrease disease activity in people with CAPS.

    Article  CAS  PubMed  Google Scholar 

  152. Sibley, C.H. et al. A 24-month open-label study of canakinumab in neonatal-onset multisystem inflammatory disease. Ann. Rheum. Dis. 74, 1714–1719 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Goldbach-Mansky, R. et al. A pilot study to evaluate the safety and efficacy of the long-acting interleukin-1 inhibitor rilonacept (interleukin-1 Trap) in patients with familial cold autoinflammatory syndrome. Arthritis Rheum. 58, 2432–2442 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hoffman, H.M. et al. Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum. 58, 2443–2452 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Canna, S.W. et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J. Allergy Clin. Immunol. 139, 1698–1701 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Chae, J.J. et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. Proc. Natl. Acad. Sci. USA 103, 9982–9987 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hashkes, P.J. et al. Rilonacept for colchicine-resistant or -intolerant familial Mediterranean fever: a randomized trial. Ann. Intern. Med. 157, 533–541 (2012).

    Article  PubMed  Google Scholar 

  158. König, N. et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann. Rheum. Dis. 76, 468–472 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Van Eyck, L. Jr. et al. Hematopoietic stem cell transplantation rescues the immunologic phenotype and prevents vasculopathy in patients with adenosine deaminase 2 deficiency. J. Allergy Clin. Immunol. 135, 283–287.e5 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Neven, B. et al. Allogeneic bone marrow transplantation in mevalonic aciduria. N. Engl. J. Med. 356, 2700–2703 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Giardino, S. et al. Long-term outcome of a successful cord blood stem cell transplant in mevalonate kinase deficiency. Pediatrics 135, e211–e215 (2015).

    Article  PubMed  Google Scholar 

  162. Rodero, M.P. & Crow, Y.J. Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J. Exp. Med. 213, 2527–2538 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Canna, S.W. & Goldbach-Mansky, R. New monogenic autoinflammatory diseases–a clinical overview. Semin. Immunopathol. 37, 387–394 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kalpana Manthiram or Daniel L Kastner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manthiram, K., Zhou, Q., Aksentijevich, I. et al. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat Immunol 18, 832–842 (2017). https://doi.org/10.1038/ni.3777

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3777

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing