Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation

Abstract

Although intergenic long noncoding RNAs (lincRNAs) have been linked to gene regulation in various tissues, little is known about lincRNA transcriptomes in the T cell lineages. Here we identified 1,524 lincRNA clusters in 42 T cell samples, from early T cell progenitors to terminally differentiated helper T cell subsets. Our analysis revealed highly dynamic and cell-specific expression patterns for lincRNAs during T cell differentiation. These lincRNAs were located in genomic regions enriched for genes that encode proteins with immunoregulatory functions. Many were bound and regulated by the key transcription factors T-bet, GATA-3, STAT4 and STAT6. We found that the lincRNA LincR-Ccr2-5′AS, together with GATA-3, was an essential component of a regulatory circuit in gene expression specific to the TH2 subset of helper T cells and was important for the migration of TH2 cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and lineage-specific expression of lincRNAs.
Figure 2: Dynamic regulation of lincRNA expression during T cell differentiation.
Figure 3: STAT proteins regulate lincRNA expression.
Figure 4: T-bet regulates lincRNA expression in TH1 cells.
Figure 5: GATA-3 regulates expression of lincRNAs in TH2 cells.
Figure 6: LincR-Ccr2-5′AS regulates gene expression and the migration of TH2 cells.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Cabili, M.N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25, 1915–1927 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rinn, J.L. & Chang, H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145–166 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Spizzo, R., Almeida, M.I., Colombatti, A. & Calin, G.A. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 31, 4577–4587 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Payer, B. & Lee, J.T. X chromosome dosage compensation: how mammals keep the balance. Annu. Rev. Genet. 42, 733–772 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Rinn, J.L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khalil, A.M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA 106, 11667–11672 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao, J. et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol. Cell 40, 939–953 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Orom, U.A. et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46–58 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hansen, T.B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, J., Yamane, H. & Paul, W.E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vigneau, S., Rohrlich, P.S., Brahic, M. & Bureau, J.F. Tmevpg1, a candidate gene for the control of Theiler's virus persistence, could be implicated in the regulation of γ interferon. J. Virol. 77, 5632–5638 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Collier, S.P., Collins, P.L., Williams, C.L., Boothby, M.R. & Aune, T.M. Cutting edge: influence of Tmevpg1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J. Immunol. 189, 2084–2088 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Gomez, J.A. et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 152, 743–754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pang, K.C. et al. Genome-wide identification of long noncoding RNAs in CD8+ T cells. J. Immunol. 182, 7738–7748 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Pagani, M. et al. Role of microRNAs and long-non-coding RNAs in CD4+ T-cell differentiation. Immunol. Rev. 253, 82–96 (2013).

    Article  PubMed  CAS  Google Scholar 

  18. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pruitt, K.D., Tatusova, T., Brown, G.R. & Maglott, D.R. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 40, D130–D135 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Flicek, P. et al. Ensembl 2013. Nucleic Acids Res. 41, D48–D55 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Meyer, L.R. et al. The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res. 41, D64–D69 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Bu, D. et al. NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res. 40, D210–D215 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Kong, L. et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 35, W345–W349 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sigova, A.A. et al. Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proc. Natl. Acad. Sci. USA 110, 2876–2881 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vahedi, G. et al. STATs shape the active enhancer landscape of T cell populations. Cell 151, 981–993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wei, L. et al. Discrete roles of STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T helper cell differentiation. Immunity 32, 840–851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Zheng, W. & Flavell, R.A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, J. et al. The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity 37, 660–673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yagi, R., Zhu, J. & Paul, W.E. An updated view on transcription factor GATA3-mediated regulation of Th1 and Th2 cell differentiation. Int. Immunol. 23, 415–420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wei, G. et al. Genome-wide analyses of transcription factor GATA3-mediated gene regulation in distinct T cell types. Immunity 35, 299–311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mathew, A., Medoff, B.D., Carafone, A.D. & Luster, A.D. Cutting edge: Th2 cell trafficking into the allergic lung is dependent on chemoattractant receptor signaling. J. Immunol. 169, 651–655 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Huarte, M. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409–419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Loewer, S. et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet. 42, 1113–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hosoya-Ohmura, S. et al. An NK and T cell enhancer lies 280 kilobase pairs 3′ to the gata3 structural gene. Mol. Cell. Biol. 31, 1894–1904 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yagi, R. et al. The transcription factor GATA3 actively represses RUNX3 protein-regulated production of interferon-γ. Immunity 32, 507–517 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamane, H., Zhu, J. & Paul, W.E. Independent roles for IL-2 and GATA-3 in stimulating naive CD4+ T cells to generate a Th2-inducing cytokine environment. J. Exp. Med. 202, 793–804 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ichihara, M. et al. Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities. Nucleic Acids Res. 35, e123 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zang, C.Z. et al. A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25, 1952–1958 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Deaton, A.M. et al. Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Genome Res. 21, 1074–1086 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakayamada, S. et al. Early Th1 cell differentiation is marked by a Tfh cell-like transition. Immunity 35, 919–931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Huang. D., W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  46. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kelley, D. & Rinn, J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol. 13, R107 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hollander, M. & Wolfe, D.A. Nonparametric Statistical Methods (Wiley, 1973).

Download references

Acknowledgements

We thank the DNA Sequencing Core facility of the National Heart, Lung and Blood Institute (NHLBI) for sequencing the ChIP-Seq and RNA-Seq libraries; J. Edwards for most cell-sorting experiments; the flow cytometry core of NHLBI for some cell-sorting experiments and analysis; H. Cao for comments on the knockdown of lincRNA by shRNA; D. Northrup for critical reading and editing of the manuscript; H. Zhang for sharing experience with chemokines and chemokine receptors; P. Burr for RNA-Seq; and X. Zheng for sharing code for binomial tests. This study used the Biowulf Linux cluster of the US National Institutes of Health. Supported by the Division of Intramural Research of the NHLBI and NIAID (US National Institutes of Health).

Author information

Authors and Affiliations

Authors

Contributions

G.H., J.Z. and K.Z. conceived of the study, designed experiments and data analysis, and wrote the manuscript; Q.T., S.S. and F.Y. did experiments and edited the manuscript; G.H. analyzed the data; and T.M.E. and S.A.M. contributed RNA-Seq data for STAT4-deficient TH1 cells, STAT6-deficient TH2 cells and the corresponding wild-type TH1 and TH2 cells.

Corresponding authors

Correspondence to Jinfang Zhu or Keji Zhao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 2–6 and 8–9 (DOC 1319 kb)

Supplementary Table 1

A compilation of lincRNAs during T cell development and differentiation. (XLSX 1558 kb)

Supplementary Table 7

Th2-preferred genes affected by LincR-Ccr2-5'AS knockdown in TH2 cells (XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, G., Tang, Q., Sharma, S. et al. Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation. Nat Immunol 14, 1190–1198 (2013). https://doi.org/10.1038/ni.2712

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2712

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing