Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome–dependent processing of IL-1β

Abstract

Interleukin 1 (IL-1) is an important mediator of innate immunity but can also promote inflammatory tissue damage. During chronic infections such as tuberculosis, the beneficial antimicrobial role of IL-1 must be balanced with the need to prevent immunopathology. By exogenously controlling the replication of Mycobacterium tuberculosis in vivo, we obviated the requirement for antimicrobial immunity and discovered that both IL-1 production and infection-induced immunopathology were suppressed by lymphocyte-derived interferon-γ (IFN-γ). This effect was mediated by nitric oxide (NO), which we found specifically inhibited assembly of the NLRP3 inflammasome via thiol nitrosylation. Our data indicate that the NO produced as a result of adaptive immunity is indispensable in modulating the destructive innate inflammatory responses elicited during persistent infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lymphocytes, IFN-γ and iNOS modulate the immunopathology of tuberculosis.
Figure 2: The anti-inflammatory activities of NO are independent of its antimycobacterial function.
Figure 3: IL-1R1 and ASC promote the enhanced recruitment of neutrophils observed after inhibition of iNOS.
Figure 4: Activation of macrophages by IFN-γ inhibits the processing of IL-1β.
Figure 5: IFN-γ specifically inhibits activation of the NLRP3 inflammasome.
Figure 6: NO is necessary for IFN-γ-mediated suppression of IL-1β processing.
Figure 7: IFN-γ-induced NO post-translationally inhibits assembly and activation of the NLRP3 inflammasome via thiol nitrosylation.

Similar content being viewed by others

References

  1. Lamkanfi, M. & Dixit, V.M. Inflammasomes: guardians of cytosolic sanctity. Immunol. Rev. 227, 95–105 (2009).

    CAS  PubMed  Google Scholar 

  2. Vance, R.E., Isberg, R.R. & Portnoy, D.A. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6, 10–21 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dinarello, C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27, 519–550 (2009).

    CAS  PubMed  Google Scholar 

  4. Dinarello, C.A. Role of interleukin-1 in infectious diseases. Immunol. Rev. 127, 119–146 (1992).

    CAS  PubMed  Google Scholar 

  5. Hise, A.G. et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5, 487–497 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nathan, C. & Ding, A. Nonresolving inflammation. Cell 140, 871–882 (2010).

    CAS  PubMed  Google Scholar 

  7. Pandey, A.K. et al. NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog. 5, e1000500 (2009).

    PubMed  PubMed Central  Google Scholar 

  8. Coulombe, F. et al. Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. J. Exp. Med. 206, 1709–1716 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kang, D.D., Lin, Y., Moreno, J.R., Randall, T.D. & Khader, S.A. Profiling early lung immune responses in the mouse model of tuberculosis. PLoS ONE 6, e16161 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Seiler, P. et al. Early granuloma formation after aerosol Mycobacterium tuberculosis infection is regulated by neutrophils via CXCR3-signaling chemokines. Eur. J. Immunol. 33, 2676–2686 (2003).

    CAS  PubMed  Google Scholar 

  11. MacMicking, J.D. et al. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl. Acad. Sci. USA 94, 5243–5248 (1997).

    CAS  PubMed  Google Scholar 

  12. Capuano, S.V. III et al. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect. Immun. 71, 5831–5844 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. North, R.J. & Jung, Y.J. Immunity to tuberculosis. Annu. Rev. Immunol. 22, 599–623 (2004).

    CAS  PubMed  Google Scholar 

  14. Chackerian, A.A., Perera, T.V. & Behar, S.M. Gamma interferon-producing CD4+ T lymphocytes in the lung correlate with resistance to infection with Mycobacterium tuberculosis. Infect. Immun. 69, 2666–2674 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Eum, S.Y. et al. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest 137, 122–128 (2010).

    PubMed  Google Scholar 

  16. Eruslanov, E.B. et al. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect. Immun. 73, 1744–1753 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Carlsson, F. et al. Host-detrimental role of Esx-1-mediated inflammasome activation in mycobacterial infection. PLoS Pathog. 6, e1000895 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. Mogues, T., Goodrich, M.E. & Ryan, L. LaCourse, R. & North, R.J. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J. Exp. Med. 193, 271–280 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nandi, B. & Behar, S.M. Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J. Exp. Med. 208, 2251–2262 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Minguela, A., Pastor, S., Mi, W., Richardson, J.A. & Ward, E.S. Feedback regulation of murine autoimmunity via dominant anti-inflammatory effects of interferon gamma. J. Immunol. 178, 134–144 (2007).

    CAS  PubMed  Google Scholar 

  21. Honoré, N., Marchal, G. & Cole, S.T. Novel mutation in 16S rRNA associated with streptomycin dependence in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 39, 769–770 (1995).

    PubMed  PubMed Central  Google Scholar 

  22. Kashino, S.S., Ovendale, P., Izzo, A. & Campos-Neto, A. Unique model of dormant infection for tuberculosis vaccine development. Clin. Vaccine Immunol. 13, 1014–1021 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. McElvania TeKippe, E. et al. Granuloma formation and host defense in chronic Mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1. PLoS ONE 5, e12320 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. Mishra, B.B. et al. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell. Microbiol. 12, 1046–1063 (2010).

    CAS  PubMed  Google Scholar 

  25. Mayer-Barber, K.D. et al. Innate and adaptive interferons suppress IL-1alpha and IL-1beta production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity 35, 1023–1034 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mayer-Barber, K.D. et al. Caspase-1 independent IL-1β production is critical for host resistance to Mycobacterium tuberculosis and does not require TLR signaling in vivo. J. Immunol. 184, 3326–3330 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Keller, M., Ruegg, A., Werner, S. & Beer, H.D. Active caspase-1 is a regulator of unconventional protein secretion. Cell 132, 818–831 (2008).

    CAS  PubMed  Google Scholar 

  28. Pelegrin, P. & Surprenant, A. Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1beta release through a dye uptake-independent pathway. J. Biol. Chem. 282, 2386–2394 (2007).

    CAS  PubMed  Google Scholar 

  29. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nat. Immunol. 7, 576–582 (2006).

    CAS  PubMed  Google Scholar 

  31. Koo, I.C. et al. ESX-1-dependent cytolysis in lysosome secretion and inflammasome activation during mycobacterial infection. Cell. Microbiol. 10, 1866–1878 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207, 1745–1755 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chan, J., Tanaka, K., Carroll, D., Flynn, J. & Bloom, B.R. Effects of nitric oxide synthase inhibitors on murine infection with Mycobacterium tuberculosis. Infect. Immun. 63, 736–740 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hobbs, A.J. & Ignarro, L.J. Nitric oxide-cyclic GMP signal transduction system. Methods Enzymol. 269, 134–148 (1996).

    CAS  PubMed  Google Scholar 

  35. Fernandes-Alnemri, T. et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 14, 1590–1604 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Stamler, J.S., Lamas, S. & Fang, F.C. Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106, 675–683 (2001).

    CAS  PubMed  Google Scholar 

  37. Forrester, M.T., Foster, M.W. & Stamler, J.S. Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress. J. Biol. Chem. 282, 13977–13983 (2007).

    CAS  PubMed  Google Scholar 

  38. Jaffrey, S.R. & Snyder, S.H. The biotin switch method for the detection of S-nitrosylated proteins. Sci. STKE 2001, pl1 (2001).

    CAS  PubMed  Google Scholar 

  39. Dimmeler, S., Haendeler, J., Nehls, M. & Zeiher, A.M. Suppression of apoptosis by nitric oxide via inhibition of interleukin-1β-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J. Exp. Med. 185, 601–607 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Broz, P., von Moltke, J., Jones, J.W., Vance, R.E. & Monack, D.M. Differential requirement for caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8, 471–483 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rathinam, V.A., Vanaja, S.K. & Fitzgerald, K.A. Regulation of inflammasome signaling. Nat. Immunol. 13, 333–332 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Meissner, F., Molawi, K. & Zychlinsky, A. Superoxide dismutase 1 regulates caspase-1 and endotoxic shock. Nat. Immunol. 9, 866–872 (2008).

    CAS  PubMed  Google Scholar 

  43. Hopkins, N., Gunning, Y., O'Croinin, D.F., Laffey, J.G. & McLoughlin, P. Anti-inflammatory effect of augmented nitric oxide production in chronic lung infection. J. Pathol. 209, 198–205 (2006).

    CAS  PubMed  Google Scholar 

  44. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nandi, B. & Behar, S.M. Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J. Exp. Med. 208, 2251–2262 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fremond, C.M. et al. IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J. Immunol. 179, 1178–1189 (2007).

    CAS  PubMed  Google Scholar 

  47. Tobin, D.M. et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140, 717–730 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schön, T. et al. Arginine as an adjuvant to chemotherapy improves clinical outcome in active tuberculosis. Eur. Respir. J. 21, 483–488 (2003).

    PubMed  Google Scholar 

  49. Martens, G.W. et al. Tuberculosis susceptibility of diabetic mice. Am. J. Respir. Cell Mol. Biol. 37, 518–524 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Roberson, S.M. & Walker, W.S. Immortalization of cloned mouse splenic macrophages with a retrovirus containing the v-raf/mil and v-myc oncogenes. Cell. Immunol. 116, 341–351 (1988).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Swain (University of Massachusetts Medical School) for Ifngr1−/− mice; A. Campos-Neto (Forsyth Institute) for M. tuberculosis strain 18b; B. McCormick (University of Massachusetts Medical School) for Salmonella enterica serovar Typhimurium; E. Alnemri (Thomas Jefferson University) for rabbit polyclonal antibody to mouse AIM2; G. Nunez (University of Michigan) for rat monoclonal antibody to ASC; B. McCormick, K. Rock, R. Mishra, A.K. Pandey and J. Lee for scientific insight; and H. Ducharme for animal husbandry. Supported by the US National Institutes of Health (AI064282 to C.M.S.; HL064884 to H.K.; AI083713 to K.A.F.; and U54 AI057159 to V.A.K.R.) and the Howard Hughes Medical Institute (C.M.S.).

Author information

Authors and Affiliations

Authors

Contributions

B.B.M. and C.M.S. conceived of the project and designed the experiments; B.B.M. did most of the experiments; V.A.K.R. and G.W.M. did specific experiments; A.J.M. provided veterinary pathology expertise; B.B.M. and C.M.S. wrote the manuscript; H.K. and K.A.F. provided mutant mice, scientific insight and critical review of the manuscript; and C.M.S. oversaw the project.

Corresponding author

Correspondence to Christopher M Sassetti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 872 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, B., Rathinam, V., Martens, G. et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome–dependent processing of IL-1β. Nat Immunol 14, 52–60 (2013). https://doi.org/10.1038/ni.2474

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2474

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing