Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry

Abstract

After antigenic challenge, B cells enter the dark zone (DZ) of germinal centers (GCs) to proliferate and hypermutate their immunoglobulin genes. Mutants with greater affinity for the antigen are positively selected in the light zone (LZ) to either differentiate into plasma and memory cells or reenter the DZ. The molecular circuits that govern positive selection in the GC are not known. We show here that the GC reaction required biphasic regulation of expression of the cell-cycle regulator c-Myc that involved its transient induction during early GC commitment, its repression by Bcl-6 in DZ B cells and its reinduction in B cells selected for reentry into the DZ. Inhibition of c-Myc in vivo led to GC collapse, which indicated an essential role for c-Myc in GCs. Our results have implications for the mechanism of GC selection and the role of c-Myc in lymphomagenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A subset of LZ GC B cells express c-Myc under physiological conditions.
Figure 2: Alternating peaks of c-Myc expression and Bcl-6 expression during T cell–dependent antigen responses and GC formation.
Figure 3: Bcl-6 represses c-Myc protein expression in DZ GC B cells.
Figure 4: Coordinated upregulation of genes of the 'immune activation' signature and those encoding molecules involved in entry into the cell cycle in GFP–c-Myc+ GC B cells.
Figure 5: The BCR repertoire of GFP–c-Myc+ GC B cells shows enrichment for high-affinity variants.
Figure 6: Access to T cell help triggers c-Myc expression before reentry into the DZ.
Figure 7: The biological activity of c-Myc is required for normal GC maintenance.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Allen, C.D., Okada, T. & Cyster, J.G. Germinal-center organization and cellular dynamics. Immunity 27, 190–202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    CAS  PubMed  Google Scholar 

  3. Victora, G.D. & Nussenzweig, M.C. Germinal centers. Annu. Rev. Immunol. 30, 429–457 (2012).

    CAS  PubMed  Google Scholar 

  4. Victora, G.D. et al. Identification of human germinal center light and dark zone cells and their relationship to human B cell lymphomas. Blood (published online, doi:10.1182/blood-2012-03-415380 (26 June 2012)).

  5. Allen, C.D., Okada, T., Tang, H.L. & Cyster, J.G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Victora, G.D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oprea, M. & Perelson, A.S. Somatic mutation leads to efficient affinity maturation when centrocytes recycle back to centroblasts. J. Immunol. 158, 5155–5162 (1997).

    CAS  PubMed  Google Scholar 

  8. Shaffer, A.L. et al. Signatures of the immune response. Immunity 15, 375–385 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Klein, U. et al. Transcriptional analysis of the B cell germinal center reaction. Proc. Natl. Acad. Sci. USA 100, 2639–2644 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dent, A.L., Shaffer, A.L., Yu, X., Allman, D. & Staudt, L.M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589–592 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Ye, B.H. et al. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat. Genet. 16, 161–170 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Schubart, D.B., Rolink, A., Kosco-Vilbois, M.H., Botteri, F. & Matthias, P. B-cell-specific coactivator OBF-1/OCA-B/Bob1 required for immune response and germinal centre formation. Nature 383, 538–542 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Basso, K. & Dalla-Favera, R. Roles of BCL6 in normal and transformed germinal center B cells. Immunol. Rev. 247, 172–183 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Basso, K. et al. Integrated biochemical and computational approach identifies BCL6 direct target genes controlling multiple pathways in normal germinal center B cells. Blood 115, 975–984 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dang, C.V. MYC on the path to cancer. Cell 149, 22–35 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eilers, M. & Eisenman, R.N. Myc's broad reach. Genes Dev. 22, 2755–2766 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grandori, C., Cowley, S.M., James, L.P. & Eisenman, R.N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol. 16, 653–699 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Ci, W. et al. The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL. Blood 113, 5536–5548 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nahar, R. et al. Pre-B cell receptor-mediated activation of BCL6 induces pre-B cell quiescence through transcriptional repression of MYC. Blood 118, 4174–4178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang, C.Y., Bredemeyer, A.L., Walker, L.M., Bassing, C.H. & Sleckman, B.P. Dynamic regulation of c-Myc proto-oncogene expression during lymphocyte development revealed by a GFP-c-Myc knock-in mouse. Eur. J. Immunol. 38, 342–349 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Jacob, J. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers. J. Exp. Med. 176, 679–687 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Schwickert, T.A. et al. A dynamic T cell-limited checkpoint regulates affinity-dependent B cell entry into the germinal center. J. Exp. Med. 208, 1243–1252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garside, P. et al. Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281, 96–99 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Shih, T.A., Roederer, M. & Nussenzweig, M.C. Role of antigen receptor affinity in T cell-independent antibody responses in vivo. Nat. Immunol. 3, 399–406 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Shih, T.A., Meffre, E., Roederer, M. & Nussenzweig, M.C. Role of BCR affinity in T cell dependent antibody responses in vivo. Nat. Immunol. 3, 570–575 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Kitano, M. et al. Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 34, 961–972 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Glynne, R. et al. How self-tolerance and the immunosuppressive drug FK506 prevent B-cell mitogenesis. Nature 403, 672–676 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Klaus, S.J. & Parker, D.C Inducible cell contact signals regulate early activation gene expression during B-T lymphocyte collaboration. J. Immunol. 149, 1867–1875 (1992).

    CAS  PubMed  Google Scholar 

  30. Cumano, A. & Rajewsky, K. Structure of primary anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibodies in normal and idiotypically suppressed C57BL/6 mice. Eur. J. Immunol. 15, 512–520 (1985).

    Article  CAS  PubMed  Google Scholar 

  31. Rajewsky, K., Forster, I. & Cumano, A. Evolutionary and somatic selection of the antibody repertoire in the mouse. Science 238, 1088–1094 (1987).

    Article  CAS  PubMed  Google Scholar 

  32. Batista, F.D., Iber, D. & Neuberger, M.S. B cells acquire antigen from target cells after synapse formation. Nature 411, 489–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Nolte, M.A., van Olffen, R.W., van Gisbergen, K.P. & van Lier, R.A. Timing and tuning of CD27–CD70 interactions: the impact of signal strength in setting the balance between adaptive responses and immunopathology. Immunol. Rev. 229, 216–231 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Borst, J., Hendriks, J. & Xiao, Y. CD27 and CD70 in T cell and B cell activation. Curr. Opin. Immunol. 17, 275–281 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Hauser, A.E., Shlomchik, M.J. & Haberman, A.M. In vivo imaging studies shed light on germinal-centre development. Nat. Rev. Immunol. 7, 499–504 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Soucek, L. et al. Design and properties of a Myc derivative that efficiently homodimerizes. Oncogene 17, 2463–2472 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Soucek, L. et al. Modelling Myc inhibition as a cancer therapy. Nature 455, 679–683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sarin, K.Y. et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 436, 1048–1052 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Savino, M. et al. The action mechanism of the Myc inhibitor termed Omomyc may give clues on how to target Myc for cancer therapy. PLoS ONE 6, e22284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Premsrirut, P.K. et al. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145, 145–158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cutrona, G. et al. c-myc proto-oncogene expression by germinal center B cells isolated from human tonsils. Ann. NY Acad. Sci. 815, 436–439 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Martinez-Valdez, H. et al. Human germinal center B cells express the apoptosis-inducing genes Fas, c-myc, P53, and Bax but not the survival gene bcl-2. J. Exp. Med. 183, 971–977 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Oestreich, K.J., Mohn, S.E. & Weinmann, A.S. Molecular mechanisms that control the expression and activity of Bcl-6 in T(H)1 cells to regulate flexibility with a TFH-like gene profile. Nat. Immunol. 13, 405–411 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Calado, D.P. et al. The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers. Nat. Immunol. doi:10/1038.ni2418 (this issue).

  45. Rahl, P.B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pavri, R. et al. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 143, 122–133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bereshchenko, O.R., Gu, W. & Dalla-Favera, R. Acetylation inactivates the transcriptional repressor BCL6. Nat. Genet. 32, 606–613 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Phan, T.G. et al. High affinity germinal center B cells are actively selected into the plasma cell compartment. J. Exp. Med. 203, 2419–2424 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Küppers, R. Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5, 251–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Nussenzweig, A. & Nussenzweig, M.C. Origin of chromosomal translocations in lymphoid cancer. Cell 141, 27–38 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hardie, D.L., Johnson, G.D., Khan, M. & MacLennan, I.C. Quantitative analysis of molecules which distinguish functional compartments within germinal centers. Eur. J. Immunol. 23, 997–1004 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Cattoretti, G. et al. Nuclear and cytoplasmic AID in extrafollicular and germinal center B cells. Blood 107, 3967–3975 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Guo, M. et al. A monoclonal antibody to the DEC-205 endocytosis receptor on human dendritic cells. Hum. Immunol. 61, 729–738 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Jiang, W. et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375, 151–155 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Gurel, B. et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod. Pathol. 21, 1156–1167 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Phan, R.T. & Dalla-Favera, R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 432, 635–639 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Califano, A., Stolovitzky, G. & Tu, Y. Analysis of gene expression microarrays for phenotype classification. Proc. Int. Conf. Intell. Sys. Mol. Biol. 8, 75–85 (2000).

    CAS  Google Scholar 

  58. Klein, U. et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J. Exp. Med. 194, 1625–1638 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Sleckman (Washington University) for GFP–c-Myc mice; S. Artandi (Stanford University) for mice with transgenic expression of rtTA-actin; G. Evan (University of Cambridge, UK) and L. Soucek (Vall d'Hebron Institute of Oncology) for TRE-Omomyc rtTA-Actin mice; L. Reavie, I. Aifantis (New York University), M. Chesi and L. Bergsagel (Mayo Clinic) for access to these mice; F.W. Alt for advice on immunization protocols; R. Bosch for experimental help; K. Basso, A.B. Holmes, L. Pasqualucci, M. Bansal, C. Lefebvre, P. Sumazin and A. Califano for advice on data analysis; T. Mo for mouse husbandry; H. Tang, Q. Shen, V. Miljkovic, K. Gordon, C. Liu, and S. Tetteh for technical assistance; S. Serrano (Parc de Salut Mar, Barcelona) for human tissue samples; M. Jara-Acevedo for technical advice; and U. Klein for insights and for critical reading of this manuscript. Supported by the US National Institutes of Health (P01-CA092625 and R01-CA37295 to R.D.-F., and R01-AI037526 to M.C.N.), the Leukemia and Lymphoma Society (R.D.-F.), the National Cancer Institute (K99/R00-CA151827 to D.D.-S.), the Whitehead Institute for Biomedical Research (G.D.V.) and the Howard Hughes Medical Institute (M.C.N.).

Author information

Authors and Affiliations

Authors

Contributions

D.D.-S. and G.D.V designed the study, did the experiments, analyzed the data and wrote the manuscript; D.D.-S. did the computational analyses; C.Y.Y. did experiments; C.Y.Y., R.T.P. and M.S. identified and characterized the Bcl-6–c-Myc transcriptional interaction; R.D.-F. and M.C.N. supervised the project, provided direction in the study design and wrote the manuscript; and all authors approved the final manuscript.

Corresponding authors

Correspondence to Michel C Nussenzweig or Riccardo Dalla-Favera.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Tables 4–6 (PDF 4310 kb)

Supplementary Table 1

BCL6 ChIP-on-chip binding profile across the proximal region of the MYC locus. (XLSX 50 kb)

Supplementary Table 2

GFPMYC signature genes. (XLSX 31 kb)

Supplementary Table 3

Gene Set Enrichment Analysis of GFPMYC signatures. (XLSX 22 kb)

Supplementary Table 7

List of primers used in real-time quantitative RT-PCR (qRT-PCR), quantitative chromatin immunoprecipitation (qChIP) and IgH-V gene sequence analysis. (XLS 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dominguez-Sola, D., Victora, G., Ying, C. et al. The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nat Immunol 13, 1083–1091 (2012). https://doi.org/10.1038/ni.2428

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2428

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer