Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Restraint of inflammatory signaling by interdependent strata of negative regulatory pathways

Abstract

Activation of Toll-like receptor (TLR) signaling and related pathways by microbial products drives inflammatory responses, host-defense pathways and adaptive immunity. The cost of excessive inflammation is cell and tissue damage, an underlying cause of many acute and chronic diseases. Coincident with activation of TLR signaling, a plethora of anti-inflammatory pathways and mechanisms begin to modulate inflammation until tissue repair is complete. Whereas most studies have focused on the signaling components immediately downstream of the TLRs, this Review summarizes the different levels of anti-inflammatory pathways that have evolved to abate TLR signaling and how they are integrated to prevent cell and tissue destruction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Negative regulation of IL-1β production, signaling and bioavailability as an example of multitiered anti-inflammatory integration.
Figure 2: Three fundamental levels for transcriptional suppression of inflammation (stratum 5).
Figure 3: IL-10 regulates the production of downstream factors that control many strata of inflammation.

Similar content being viewed by others

References

  1. Nathan, C. & Ding, A. Nonresolving inflammation. Cell 140, 871–882 (2010).

    CAS  PubMed  Google Scholar 

  2. Bezbradica, J.S. & Medzhitov, R. Integration of cytokine and heterologous receptor signaling pathways. Nat. Immunol. 10, 333–339 (2009).

    CAS  PubMed  Google Scholar 

  3. Ivashkiv, L.B. Cross-regulation of signaling by ITAM-associated receptors. Nat. Immunol. 10, 340–347 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee, C.C., Avalos, A.M. & Ploegh, H.L. Accessory molecules for Toll-like receptors and their function. Nat. Rev. Immunol. 12, 168–179 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Liew, F.Y., Xu, D., Brint, E.K. & O'Neill, L.A. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    CAS  PubMed  Google Scholar 

  6. Oeckinghaus, A., Hayden, M.S. & Ghosh, S. Crosstalk in NF-κB signaling pathways. Nat. Immunol. 12, 695–708 (2011).

    CAS  PubMed  Google Scholar 

  7. Anderson, P. Post-transcriptional regulons coordinate the initiation and resolution of inflammation. Nat. Rev. Immunol. 10, 24–35 (2010).

    CAS  PubMed  Google Scholar 

  8. Christ, M. et al. Immune dysregulation in TGF-β1-deficient mice. J. Immunol. 153, 1936–1946 (1994).

    CAS  PubMed  Google Scholar 

  9. Kühn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    PubMed  Google Scholar 

  10. Shull, M.M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Casanova, J.L., Abel, L. & Quintana-Murci, L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu. Rev. Immunol. 29, 447–491 (2011).

    CAS  PubMed  Google Scholar 

  12. Alcaïs, A., Abel, L. & Casanova, J.L. Human genetics of infectious diseases: between proof of principle and paradigm. J. Clin. Invest. 119, 2506–2514 (2009).

    PubMed  PubMed Central  Google Scholar 

  13. Kapetanovic, R. et al. Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide. J. Immunol. 188, 3382–3394 (2012).

    CAS  PubMed  Google Scholar 

  14. Schroder, K. et al. Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. Proc. Natl. Acad. Sci. USA 109, E944–E953 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Alexander, W.S. & Hilton, D.J. The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu. Rev. Immunol. 22, 503–529 (2004).

    CAS  PubMed  Google Scholar 

  16. Kinjyo, I. et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 17, 583–591 (2002).

    CAS  PubMed  Google Scholar 

  17. Nakagawa, R. et al. SOCS-1 participates in negative regulation of LPS responses. Immunity 17, 677–687 (2002).

    CAS  PubMed  Google Scholar 

  18. Baetz, A., Frey, M., Heeg, K. & Dalpke, A.H. Suppressor of cytokine signaling (SOCS) proteins indirectly regulate toll-like receptor signaling in innate immune cells. J. Biol. Chem. 279, 54708–54715 (2004).

    CAS  PubMed  Google Scholar 

  19. Gingras, S., Parganas, E., de Pauw, A., Ihle, J.N. & Murray, P.J. Re-examination of the role of suppressor of cytokine signaling 1 (SOCS1) in the regulation of toll-like receptor signaling. J. Biol. Chem. 279, 54702–54707 (2004).

    CAS  PubMed  Google Scholar 

  20. Mansell, A. et al. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat. Immunol. 7, 148–155 (2006).

    CAS  PubMed  Google Scholar 

  21. Blander, J.M. & Sander, L.E. Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat. Rev. Immunol. 12, 215–225 (2012).

    CAS  PubMed  Google Scholar 

  22. Marteyn, B., Gazi, A. & Sansonetti, P. Shigella: A model of virulence regulation in vivo. Gut Microbes 3, 104–120 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. Hu, X., Chakravarty, S.D. & Ivashkiv, L.B. Regulation of interferon and Toll-like receptor signaling during macrophage activation by opposing feedforward and feedback inhibition mechanisms. Immunol. Rev. 226, 41–56 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Saraiva, M. & O'Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10, 170–181 (2010).

    CAS  PubMed  Google Scholar 

  25. Beg, A.A., Sha, W.C., Bronson, R.T. & Baltimore, D. Constitutive NF-κB activation, enhanced granulopoiesis, and neonatal lethality in IκBα-deficient mice. Genes Dev. 9, 2736–2746 (1995).

    CAS  PubMed  Google Scholar 

  26. Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191–202 (2002).

    CAS  PubMed  Google Scholar 

  27. Lee, E.G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Oshima, S. et al. ABIN-1 is a ubiquitin sensor that restricts cell death and sustains embryonic development. Nature 457, 906–909 (2009).

    CAS  PubMed  Google Scholar 

  29. Zhou, J. et al. A20-binding inhibitor of NF-κB (ABIN1) controls Toll-like receptor-mediated CCAAT/enhancer-binding protein β activation and protects from inflammatory disease. Proc. Natl. Acad. Sci. USA 108, E998–E1006 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Murray, P.J. & Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. McAuley, J.L. et al. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J. Clin. Invest. 117, 2313–2324 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ueno, K. et al. MUC1 mucin is a negative regulator of toll-like receptor signaling. Am. J. Respir. Cell Mol. Biol. 38, 263–268 (2008).

    CAS  PubMed  Google Scholar 

  33. Rauch, P.J. et al. Innate response activator B cells protect against microbial sepsis. Science 335, 597–601 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Thomson, A.W. & Knolle, P.A. Antigen-presenting cell function in the tolerogenic liver environment. Nat. Rev. Immunol. 10, 753–766 (2010).

    CAS  PubMed  Google Scholar 

  35. Andersson, U. & Tracey, K.J. Reflex principles of immunological homeostasis. Annu. Rev. Immunol. 30, 313–335 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hajishengallis, G. & Lambris, J.D. Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol. 31, 154–163 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Oikonomopoulou, K., Ricklin, D., Ward, P.A. & Lambris, J.D. Interactions between coagulation and complement–their role in inflammation. Semin. Immunopathol. 34, 151–165 (2012).

    CAS  PubMed  Google Scholar 

  38. Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J.D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    CAS  PubMed  Google Scholar 

  40. Mancek-Keber, M. et al. MARCKS as a negative regulator of lipopolysaccharide signaling. J. Immunol. 188, 3893–3902 (2012).

    CAS  PubMed  Google Scholar 

  41. Smale, S.T. Selective transcription in response to an inflammatory stimulus. Cell 140, 833–844 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ruland, J. Return to homeostasis: downregulation of NF-κB responses. Nat. Immunol. 12, 709–714 (2011).

    CAS  PubMed  Google Scholar 

  43. Park, S.H., Park-Min, K.H., Chen, J., Hu, X. & Ivashkiv, L.B. Tumor necrosis factor induces GSK3 kinase-mediated cross-tolerance to endotoxin in macrophages. Nat. Immunol. 12, 607–615 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Foster, S.L., Hargreaves, D.C. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447, 972–978 (2007).

    CAS  PubMed  Google Scholar 

  45. Chinenov, Y. et al. Role of transcriptional coregulator GRIP1 in the anti-inflammatory actions of glucocorticoids. Proc. Natl. Acad. Sci. USA 109, 11776–11781 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ogawa, S. et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122, 707–721 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lang, R., Patel, D., Morris, J.J., Rutschman, R.L. & Murray, P.J. Shaping gene expression in activated and resting primary macrophages by IL-10. J. Immunol. 169, 2253–2263 (2002).

    CAS  PubMed  Google Scholar 

  48. Negishi, H. et al. Negative regulation of Toll-like-receptor signaling by IRF-4. Proc. Natl. Acad. Sci. USA 102, 15989–15994 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kratochvill, F. et al. Tristetraprolin-driven regulatory circuit controls quality and timing of mRNA decay in inflammation. Mol. Syst. Biol. 7, 560 (2011).

    PubMed  PubMed Central  Google Scholar 

  50. O'Connell, R.M., Rao, D.S. & Baltimore, D. microRNA regulation of inflammatory responses. Annu. Rev. Immunol. 30, 295–312 (2012).

    CAS  PubMed  Google Scholar 

  51. Yiakouvaki, A. et al. Myeloid cell expression of the RNA-binding protein HuR protects mice from pathologic inflammation and colorectal carcinogenesis. J. Clin. Invest. 122, 48–61 (2012).

    CAS  PubMed  Google Scholar 

  52. Martinon, F. & Glimcher, L.H. Regulation of innate immunity by signaling pathways emerging from the endoplasmic reticulum. Curr. Opin. Immunol. 23, 35–40 (2011).

    CAS  PubMed  Google Scholar 

  53. Woo, C.W. et al. Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by toll-like receptor signalling. Nat. Cell Biol. 11, 1473–1480 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Krawczyk, C.M. et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115, 4742–4749 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Into, T., Inomata, M., Takayama, E. & Takigawa, T. Autophagy in regulation of Toll-like receptor signaling. Cell. Signal. 24, 1150–1162 (2012).

    CAS  PubMed  Google Scholar 

  56. Wang, R. & Green, D.R. Metabolic checkpoints in activated T cells. Nat. Immunol. 13, 907–915 (2012).

    CAS  PubMed  Google Scholar 

  57. Covert, M.W., Leung, T.H., Gaston, J.E. & Baltimore, D. Achieving stability of lipopolysaccharide-induced NF-κB activation. Science 309, 1854–1857 (2005).

    CAS  PubMed  Google Scholar 

  58. Werner, S.L., Barken, D. & Hoffmann, A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309, 1857–1861 (2005).

    CAS  PubMed  Google Scholar 

  59. Denslow, S.A. & Wade, P.A. The human Mi-2/NuRD complex and gene regulation. Oncogene 26, 5433–5438 (2007).

    CAS  PubMed  Google Scholar 

  60. Ramirez-Carrozzi, V.R. et al. Selective and antagonistic functions of SWI/SNF and Mi-2β nucleosome remodeling complexes during an inflammatory response. Genes Dev. 20, 282–296 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Barish, G.D. et al. Bcl-6 and NF-κB cistromes mediate opposing regulation of the innate immune response. Genes Dev. 24, 2760–2765 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173–178 (2006).

    CAS  PubMed  Google Scholar 

  63. Whitmore, M.M. et al. Negative regulation of TLR-signaling pathways by activating transcription factor-3. J. Immunol. 179, 3622–3630 (2007).

    CAS  PubMed  Google Scholar 

  64. Biswas, S.K. & Lopez-Collazo, E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 30, 475–487 (2009).

    CAS  PubMed  Google Scholar 

  65. Foster, S.L. & Medzhitov, R. Gene-specific control of the TLR-induced inflammatory response. Clin. Immunol. 130, 7–15 (2009).

    CAS  PubMed  Google Scholar 

  66. Ivashkiv, L.B. Inflammatory signaling in macrophages: transitions from acute to tolerant and alternative activation states. Eur. J. Immunol. 41, 2477–2481 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, J. & Ivashkiv, L.B. IFN-γ abrogates endotoxin tolerance by facilitating Toll-like receptor-induced chromatin remodeling. Proc. Natl. Acad. Sci. USA 107, 19438–19443 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, T.F., Yoza, B.K., El Gazzar, M., Vachharajani, V.T. & McCall, C.E. NAD+-dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance. J. Biol. Chem. 286, 9856–9864 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ramirez-Carrozzi, V.R. et al. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138, 114–128 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Glocker, E.O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sellon, R.K. et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun. 66, 5224–5231 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rakoff-Nahoum, S., Hao, L. & Medzhitov, R. Role of toll-like receptors in spontaneous commensal-dependent colitis. Immunity 25, 319–329 (2006).

    CAS  PubMed  Google Scholar 

  73. Biswas, A. et al. Negative regulation of Toll-like receptor signaling plays an essential role in homeostasis of the intestine. Eur. J. Immunol. 41, 182–194 (2011).

    CAS  PubMed  Google Scholar 

  74. Cyktor, J.C. & Turner, J. Interleukin-10 and immunity against prokaryotic and eukaryotic intracellular pathogens. Infect. Immun. 79, 2964–2973 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Belkaid, Y., Piccirillo, C.A., Mendez, S., Shevach, E.M. & Sacks, D.L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002).

    CAS  PubMed  Google Scholar 

  76. Redford, P.S., Murray, P.J. & O'Garra, A. The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol. 4, 261–270 (2011).

    CAS  PubMed  Google Scholar 

  77. Takeda, K. et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10, 39–49 (1999).

    CAS  PubMed  Google Scholar 

  78. Delgoffe, G.M., Murray, P.J. & Vignali, D.A. Interpreting mixed signals: the cell's cytokine conundrum. Curr. Opin. Immunol. 23, 632–638 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. O'Shea, J.J. & Murray, P.J. Cytokine signaling modules in inflammatory responses. Immunity 28, 477–487 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Murray, P.J. The JAK-STAT signaling pathway: input and output integration. J. Immunol. 178, 2623–2629 (2007).

    CAS  PubMed  Google Scholar 

  81. El Kasmi, K.C. et al. General nature of the STAT3-activated anti-inflammatory response. J. Immunol. 177, 7880–7888 (2006).

    CAS  PubMed  Google Scholar 

  82. Murray, P.J. The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proc. Natl. Acad. Sci. USA 102, 8686–8691 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Smallie, T. et al. IL-10 inhibits transcription elongation of the human TNF gene in primary macrophages. J. Exp. Med. 207, 2081–2088 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. El Kasmi, K.C. et al. Cutting edge: A transcriptional repressor and corepressor induced by the STAT3-regulated anti-inflammatory signaling pathway. J. Immunol. 179, 7215–7219 (2007).

    CAS  PubMed  Google Scholar 

  85. Hutchins, A.P., Poulain, S. & Miranda-Saavedra, D. Genome-wide analysis of STAT3 binding in vivo predicts effectors of the anti-inflammatory response in macrophages. Blood 119, e110–e119 (2012).

    CAS  PubMed  Google Scholar 

  86. Zhou, L., Nazarian, A.A. & Smale, S.T. Interleukin-10 inhibits interleukin-12 p40 gene transcription by targeting a late event in the activation pathway. Mol. Cell. Biol. 24, 2385–2396 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhou, L. et al. An inducible enhancer required for Il12b promoter activity in an insulated chromatin environment. Mol. Cell. Biol. 27, 2698–2712 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Smith, A.M. et al. A distal enhancer in Il12b is the target of transcriptional repression by the STAT3 pathway and requires the basic leucine zipper (B-ZIP) protein NFIL3. J. Biol. Chem. 286, 23582–23590 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kobayashi, T. et al. NFIL3 is a regulator of IL-12 p40 in macrophages and mucosal immunity. J. Immunol. 186, 4649–4655 (2011).

    CAS  PubMed  Google Scholar 

  90. Schaljo, B. et al. Tristetraprolin is required for full anti-inflammatory response of murine macrophages to IL-10. J. Immunol. 183, 1197–1206 (2009).

    CAS  PubMed  Google Scholar 

  91. Hammer, M. et al. Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J. Exp. Med. 203, 15–20 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. McCoy, C.E. et al. IL-10 inhibits miR-155 induction by toll-like receptors. J. Biol. Chem. 285, 20492–20498 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Dower, S.K. Cytokines, virokines and the evolution of immunity. Nat. Immunol. 1, 367–368 (2000).

    CAS  PubMed  Google Scholar 

  94. Wilson, M.S. et al. IL-13Rα 2 and IL-10 coordinately suppress airway inflammation, airway-hyperreactivity, and fibrosis in mice. J. Clin. Invest. 117, 2941–2951 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Sims, J.E. & Smith, D.E. The IL-1 family: regulators of immunity. Nat. Rev. Immunol. 10, 89–102 (2010).

    CAS  PubMed  Google Scholar 

  96. Gonzalez-Navajas, J.M., Lee, J., David, M. & Raz, E. Immunomodulatory functions of type I interferons. Nat. Rev. Immunol. 12, 125–135 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Shi, C.S. et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13, 255–263 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Liang, J. et al. CD44 is a negative regulator of acute pulmonary inflammation and lipopolysaccharide-TLR signaling in mouse macrophages. J. Immunol. 178, 2469–2475 (2007).

    CAS  PubMed  Google Scholar 

  99. Liang, S. et al. The C5a receptor impairs IL-12-dependent clearance of Porphyromonas gingivalis and is required for induction of periodontal bone loss. J. Immunol. 186, 869–877 (2011).

    CAS  PubMed  Google Scholar 

  100. Yanada, M. et al. Impact of antithrombin deficiency in thrombogenesis: lipopolysaccharide and stress-induced thrombus formation in heterozygous antithrombin-deficient mice. Blood 99, 2455–2458 (2002).

    CAS  PubMed  Google Scholar 

  101. Wald, D. et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat. Immunol. 4, 920–927 (2003).

    CAS  PubMed  Google Scholar 

  102. Han, C. et al. Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat. Immunol. 11, 734–742 (2010).

    CAS  PubMed  Google Scholar 

  103. Divanovic, S. et al. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat. Immunol. 6, 571–578 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hamerman, J.A., Tchao, N.K., Lowell, C.A. & Lanier, L.L. Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat. Immunol. 6, 579–586 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ajibade, A.A. et al. TAK1 negatively regulates NF-κB and p38 MAP kinase activation in Gr-1+CD11b+ neutrophils. Immunity 36, 43–54 (2012).

    PubMed  PubMed Central  Google Scholar 

  106. Courtois, G. Tumor suppressor CYLD: negative regulation of NF-κB signaling and more. Cell. Mol. Life Sci. 65, 1123–1132 (2008).

    CAS  PubMed  Google Scholar 

  107. Zhang, G. & Ghosh, S. Negative regulation of toll-like receptor-mediated signaling by Tollip. J. Biol. Chem. 277, 7059–7065 (2002).

    CAS  PubMed  Google Scholar 

  108. Hacker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204–207 (2006).

    PubMed  Google Scholar 

  109. Oganesyan, G. et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208–211 (2006).

    CAS  PubMed  Google Scholar 

  110. Ashida, H. et al. A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKγ to dampen the host NF-κB-mediated inflammatory response. Nat Cell Biol 12, 66–73 (2010).

    CAS  PubMed  Google Scholar 

  111. Zhao, Q. et al. MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. J. Exp. Med. 203, 131–140 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Chi, H. et al. Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc. Natl. Acad. Sci. USA 103, 2274–2279 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Conley, M.E. et al. Agammaglobulinemia and absent B lineage cells in a patient lacking the p85α subunit of PI3K. J. Exp. Med. 209, 463–470 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Fukao, T. et al. PI3K-mediated negative feedback regulation of IL-12 production in DCs. Nat. Immunol. 3, 875–881 (2002).

    CAS  PubMed  Google Scholar 

  115. Ananieva, O. et al. The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling. Nat. Immunol. 9, 1028–1036 (2008).

    CAS  PubMed  Google Scholar 

  116. Phillips, K., Kedersha, N., Shen, L., Blackshear, P.J. & Anderson, P. Arthritis suppressor genes TIA-1 and TTP dampen the expression of tumor necrosis factor α, cyclooxygenase 2, and inflammatory arthritis. Proc. Natl. Acad. Sci. USA 101, 2011–2016 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Colotta, F. et al. Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science 261, 472–475 (1993).

    CAS  PubMed  Google Scholar 

  118. Colotta, F. et al. Regulated expression and release of the IL-1 decoy receptor in human mononuclear phagocytes. J. Immunol. 156, 2534–2541 (1996).

    CAS  PubMed  Google Scholar 

  119. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Kratochvill, P. Ward and G. Hajishengallis for comments. Supported by the US National Institutes of Health (R01 AI073868, R01 CA127279, R01 GM086372 and P30 CA21765), The Hartwell Foundation and The American Lebanese Syrian Associated Charities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J Murray.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, P., Smale, S. Restraint of inflammatory signaling by interdependent strata of negative regulatory pathways. Nat Immunol 13, 916–924 (2012). https://doi.org/10.1038/ni.2391

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2391

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing