Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function

Abstract

The mechanisms that regulate T cell quiescence are poorly understood. We report that the tumor suppressor Tsc1 established a quiescence program in naive T cells by controlling cell size, cell cycle entry and responses to stimulation of the T cell antigen receptor. Abrogation of quiescence predisposed Tsc1-deficient T cells to apoptosis that resulted in loss of conventional T cells and invariant natural killer T cells. Loss of Tsc1 function dampened in vivo immune responses to bacterial infection. Tsc1-deficient T cells had more activity of the serine-threonine kinase complex mTORC1 but less mTORC2 activity, and activation of mTORC1 was essential for the disruption of immune homeostasis. Therefore, Tsc1-dependent control of mTOR is crucial in actively maintaining the quiescence of naive T cells to facilitate adaptive immune function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tsc1 deficiency leads to disrupted homeostasis of peripheral T cell populations.
Figure 2: Deletion of Tsc1 results in excessive apoptosis of T cells.
Figure 3: Tsc1-deficient T cells die via the Bcl-2 family–dependent intrinsic apoptotic pathway.
Figure 4: Tsc1 deficiency causes cell-autonomous loss of quiescence in vivo and hyperactive responses to TCR stimulation.
Figure 5: Tsc1-dependent gene expression programs.
Figure 6: Loss of T cell quiescence results from inducible deletion of Tsc1 and is independent of cell survival.
Figure 7: Tsc1 regulates the activity of mTORC1 and mTORC2, and mTORC1 activation is essential for the disruption of immune quiescence and homeostasis.
Figure 8: Tsc1 deficiency dampens antibacterial immune response in vivo.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Hedrick, S.M., Ch'en, I.L. & Alves, B.N. Intertwined pathways of programmed cell death in immunity. Immunol. Rev. 236, 41–53 (2010).

    Article  CAS  Google Scholar 

  2. Surh, C.D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 29, 848–862 (2008).

    Article  CAS  Google Scholar 

  3. Takada, K. & Jameson, S.C. Naive T cell homeostasis: from awareness of space to a sense of place. Nat. Rev. Immunol. 9, 823–832 (2009).

    Article  CAS  Google Scholar 

  4. Glynne, R., Ghandour, G., Rayner, J., Mack, D.H. & Goodnow, C.C. B-lymphocyte quiescence, tolerance and activation as viewed by global gene expression profiling on microarrays. Immunol. Rev. 176, 216–246 (2000).

    Article  CAS  Google Scholar 

  5. Teague, T.K. et al. Activation changes the spectrum but not the diversity of genes expressed by T cells. Proc. Natl. Acad. Sci. USA 96, 12691–12696 (1999).

    Article  CAS  Google Scholar 

  6. Berger, M. et al. An Slfn2 mutation causes lymphoid and myeloid immunodeficiency due to loss of immune cell quiescence. Nat. Immunol. 11, 335–343 (2010).

    Article  CAS  Google Scholar 

  7. Modiano, J.F., Johnson, L.D. & Bellgrau, D. Negative regulators in homeostasis of naive peripheral T cells. Immunol. Res. 41, 137–153 (2008).

    Article  CAS  Google Scholar 

  8. Yusuf, I. & Fruman, D.A. Regulation of quiescence in lymphocytes. Trends Immunol. 24, 380–386 (2003).

    Article  CAS  Google Scholar 

  9. Kuo, C.T., Veselits, M.L. & Leiden, J.M. LKLF: A transcriptional regulator of single-positive T cell quiescence and survival. Science 277, 1986–1990 (1997).

    Article  CAS  Google Scholar 

  10. Kerdiles, Y.M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 10, 176–184 (2009).

    Article  CAS  Google Scholar 

  11. Kerdiles, Y.M. et al. Foxo transcription factors control regulatory T cell development and function. Immunity 33, 890–904 (2010).

    Article  CAS  Google Scholar 

  12. Ouyang, W., Beckett, O., Flavell, R.A. & Li, M.O. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 30, 358–371 (2009).

    Article  CAS  Google Scholar 

  13. Ouyang, W. et al. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat. Immunol. 11, 618–627 (2010).

    Article  CAS  Google Scholar 

  14. Carlson, C.M. et al. Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature 442, 299–302 (2006).

    Article  CAS  Google Scholar 

  15. Takada, K. et al. Kruppel-like factor 2 is required for trafficking but not quiescence in postactivated T cells. J. Immunol. 186, 775–783 (2011).

    Article  CAS  Google Scholar 

  16. Jones, R.G. & Thompson, C.B. Revving the engine: signal transduction fuels T cell activation. Immunity 27, 173–178 (2007).

    Article  CAS  Google Scholar 

  17. Pearce, E.L. Metabolism in T cell activation and differentiation. Curr. Opin. Immunol. 22, 314–320 (2010).

    Article  CAS  Google Scholar 

  18. Zoncu, R., Efeyan, A. & Sabatini, D.M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21–35 (2011).

    Article  CAS  Google Scholar 

  19. Weichhart, T. & Saemann, M.D. The multiple facets of mTOR in immunity. Trends Immunol. 30, 218–226 (2009).

    Article  CAS  Google Scholar 

  20. Powell, J.D. & Delgoffe, G.M. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 33, 301–311 (2010).

    Article  CAS  Google Scholar 

  21. Finlay, D. & Cantrell, D.A. Metabolism, migration and memory in cytotoxic T cells. Nat. Rev. Immunol. 11, 109–117 (2011).

    Article  CAS  Google Scholar 

  22. Kwiatkowski, D.J. et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum. Mol. Genet. 11, 525–534 (2002).

    Article  CAS  Google Scholar 

  23. Tait, S.W. & Green, D.R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632 (2010).

    Article  CAS  Google Scholar 

  24. Pendergrass, W., Wolf, N. & Poot, M. Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry A 61, 162–169 (2004).

    Article  CAS  Google Scholar 

  25. Sinclair, L.V. et al. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat. Immunol. 9, 513–521 (2008).

    Article  CAS  Google Scholar 

  26. Liu, G., Yang, K., Burns, S., Shrestha, S. & Chi, H. The S1P1-mTOR axis directs the reciprocal differentiation of TH1 and Treg cells. Nat. Immunol. 11, 1047–1056 (2010).

    Article  CAS  Google Scholar 

  27. Hildeman, D.A. et al. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10, 735–744 (1999).

    Article  CAS  Google Scholar 

  28. Menon, S. et al. COP9 signalosome subunit 8 is essential for peripheral T cell homeostasis and antigen receptor-induced entry into the cell cycle from quiescence. Nat. Immunol. 8, 1236–1245 (2007).

    Article  CAS  Google Scholar 

  29. Boyman, O., Cho, J.H., Tan, J.T., Surh, C.D. & Sprent, J. A major histocompatibility complex class I-dependent subset of memory phenotype CD8+ cells. J. Exp. Med. 203, 1817–1825 (2006).

    Article  CAS  Google Scholar 

  30. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

  31. Lee, K. et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32, 743–753 (2010).

    Article  CAS  Google Scholar 

  32. Delgoffe, G.M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12, 295–303 (2011).

    Article  CAS  Google Scholar 

  33. Jones, R.G. et al. Protein kinase B regulates T lymphocyte survival, nuclear factor kappaB activation, and Bcl-XL levels in vivo. J. Exp. Med. 191, 1721–1734 (2000).

    Article  CAS  Google Scholar 

  34. Inoki, K., Zhu, T. & Guan, K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    Article  CAS  Google Scholar 

  35. Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J. & Cantley, L.C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10, 151–162 (2002).

    Article  CAS  Google Scholar 

  36. Weichhart, T. et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29, 565–577 (2008).

    Article  CAS  Google Scholar 

  37. Gan, B. et al. mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc. Natl. Acad. Sci. USA 105, 19384–19389 (2008).

    Article  CAS  Google Scholar 

  38. Chen, C. et al. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med. 205, 2397–2408 (2008).

    Article  CAS  Google Scholar 

  39. Choo, A.Y. et al. Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol. Cell 38, 487–499 (2010).

    Article  CAS  Google Scholar 

  40. Ghosh, S. et al. Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-κB activation and cell survival. Cancer Cell 10, 215–226 (2006).

    Article  CAS  Google Scholar 

  41. Rathmell, J.C., Farkash, E.A., Gao, W. & Thompson, C.B. IL-7 enhances the survival and maintains the size of naive T cells. J. Immunol. 167, 6869–6876 (2001).

    Article  CAS  Google Scholar 

  42. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    Article  CAS  Google Scholar 

  43. Pearce, E.L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    Article  CAS  Google Scholar 

  44. Rao, R.R., Li, Q., Odunsi, K. & Shrikant, P.A. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32, 67–78 (2010).

    Article  Google Scholar 

  45. Delgoffe, G.M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    Article  CAS  Google Scholar 

  46. Liu, G. et al. The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR. Nat. Immunol. 10, 769–777 (2009).

    Article  CAS  Google Scholar 

  47. Houtkooper, R.H., Williams, R.W. & Auwerx, J. Metabolic networks of longevity. Cell 142, 9–14 (2010).

    Article  CAS  Google Scholar 

  48. Shiota, C., Woo, J.T., Lindner, J., Shelton, K.D. & Magnuson, M.A. Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev. Cell 11, 583–589 (2006).

    Article  CAS  Google Scholar 

  49. Huang, d.W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Ohashi (University of Toronto) for Akt1-transgenic mice; T. Ludwig (Columbia University) for Rosa26-Cre-ERT2 mice; R. Cross, G. Lennon and S. Morgan for cell sorting; and the National Institutes of Health Tetramer Facility for the CD1d-PBS57 tetramer. Supported by the US National Institutes of Health (K01 AR053573 and R01 NS064599), the Arthritis Foundation, the Lupus Research Institute and the American Lebanese Syrian Associated Charities (H.C.).

Author information

Authors and Affiliations

Authors

Contributions

K.Y. designed and did cellular, molecular and biochemical experiments and contributed to the writing of the manuscript; G.N. did bioinformatic analyses; D.R.G. contributed genetic models and conceptual insights; W.H. contributed to cell purification; and H.C. designed experiments, wrote the manuscript and provided overall direction.

Corresponding author

Correspondence to Hongbo Chi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Tables 1–2 (PDF 1870 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, K., Neale, G., Green, D. et al. The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat Immunol 12, 888–897 (2011). https://doi.org/10.1038/ni.2068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2068

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer