Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The imprinted gene Magel2 regulates normal circadian output

Abstract

Mammalian circadian rhythms of activity are generated within the suprachiasmatic nucleus (SCN). Transcripts from the imprinted, paternally expressed Magel2 gene, which maps to the chromosomal region associated with Prader-Willi Syndrome (PWS), are highly enriched in the SCN. The Magel2 message is circadianly expressed and peaks during the subjective day. Mice deficient in Magel2 expression entrain to light cycles and express normal running-wheel rhythms, but with markedly reduced amplitude of activity and increased daytime activity. These changes are associated with reductions in food intake and male fertility. Orexin levels and orexin-positive neurons in the lateral hypothalamus are substantially reduced, suggesting that some of the consequences of Magel2 loss are mediated through changes in orexin signaling. The robust rhythmicity of Magel2 expression in the SCN and the altered behavioral rhythmicity of null mice reveal Magel2 to be a clock-controlled circadian output gene whose disruption results in some of the phenotypes characteristic of PWS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression patterns of the Magel2 transcript, visualized using LacZ histochemistry, show both the paternal expression of Magel2 in vivo and the tissue specificity of Magel2 expression in the embryonic and adult nervous systems.
Figure 2: CNS Magel2 transcript levels change during circadian cycles, and loss of Magel2 expression affects activity cycles.
Figure 3: Breeding and feeding behavior is altered in Magel2m+/p− mice.
Figure 4: Orexin expression is reduced in Magel2-deficient animals.

Similar content being viewed by others

References

  1. Goldstone, A.P. Prader-Willi syndrome: advances in genetics, pathophysiology and treatment. Trends Endocrinol. Metab. 15, 12–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Runte, M. et al. The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum. Mol. Genet. 10, 2687–2700 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Bressler, J. et al. The SNRPN promoter is not required for genomic imprinting of the Prader-Willi/Angelman domain in mice. Nat. Genet. 28, 232–240 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Yang, T. et al. A mouse model for Prader-Willi syndrome imprinting-centre mutations. Nat. Genet. 19, 25–31 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Gerard, M., Hernandez, L., Wevrick, R. & Stewart, C.L. Disruption of the mouse necdin gene results in early post-natal lethality. Nat. Genet. 23, 199–202 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Pagliardini, S., Ren, J., Wevrick, R. & Greer, J.J. Developmental abnormalities of neuronal structure and function in prenatal mice lacking the prader-willi syndrome gene necdin. Am. J. Pathol. 167, 175–191 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsai, T.F., Jiang, Y.H., Bressler, J., Armstrong, D. & Beaudet, A.L. Paternal deletion from Snrpn to Ube3a in the mouse causes hypotonia, growth retardation and partial lethality and provides evidence for a gene contributing to Prader-Willi syndrome. Hum. Mol. Genet. 8, 1357–1364 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Muscatelli, F. et al. Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome. Hum. Mol. Genet. 9, 3101–3110 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Ren, J. et al. Absence of Ndn, encoding the Prader-Willi syndrome-deleted gene necdin, results in congenital deficiency of central respiratory drive in neonatal mice. J. Neurosci. 23, 1569–1573 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Boccaccio, I. et al. The human MAGEL2 gene and its mouse homologue are paternally expressed and mapped to the Prader-Willi region. Hum. Mol. Genet. 8, 2497–2505 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Lee, S. et al. Expression and imprinting of MAGEL2 suggest a role in Prader-willi syndrome and the homologous murine imprinting phenotype. Hum. Mol. Genet. 9, 1813–1819 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, S., Walker, C.L. & Wevrick, R. Prader-Willi syndrome transcripts are expressed in phenotypically significant regions of the developing mouse brain. Gene Expr. Patterns 3, 599–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Card, J.P. Pseudorabies virus and the functional architecture of the circadian timing system. J. Biol. Rhythms 15, 453–461 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Ibata, Y. et al. Functional morphology of the suprachiasmatic nucleus. Front. Neuroendocrinol. 20, 241–268 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Silver, R. & Schwartz, W.J. The suprachiasmatic nucleus is a functionally heterogeneous timekeeping organ. Methods Enzymol. 393, 451–465 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoo, S.H. et al. PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. USA 101, 5339–5346 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Goldstone, A.P. The hypothalamus, hormones, and hunger: alterations in human obesity and illness. Prog. Brain Res. 153, 57–73 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Sakurai, T. Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med. Rev. 9, 231–241 (2005).

    Article  PubMed  Google Scholar 

  20. Hara, J., Yanagisawa, M. & Sakurai, T. Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions. Neurosci. Lett. 380, 239–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Willie, J.T. et al. Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Neuron 38, 715–730 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Davies, W., Isles, A.R. & Wilkinson, L.S. Imprinted gene expression in the brain. Neurosci. Biobehav. Rev. 29, 421–430 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Keverne, E.B., Fundele, R., Narasimha, M., Barton, S.C. & Surani, M.A. Genomic imprinting and the differential roles of parental genomes in brain development. Brain Res. Dev. Brain Res. 92, 91–100 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Lefebvre, L. et al. Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat. Genet. 20, 163–169 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Li, L. et al. Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science 284, 330–333 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Kontgen, F., Suss, G., Stewart, C., Steinmetz, M. & Bluethmann, H. Targeted disruption of the MHC class II Aa gene in C57BL/6 mice. Int. Immunol. 5, 957–964 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Herzog, E.D., Aton, S.J., Numano, R., Sakaki, Y. & Tei, H. Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons. J. Biol. Rhythms 19, 35–46 (2004).

    Article  PubMed  Google Scholar 

  28. Simmons, D.M., Arriza, J.L. & Swanson, L.W. A complete protocol for in situ hybridization of messenger RNAs in brain and other tissue with radio-labeled single stranded RNA probe. J. Histotechnol. 12, 169–180 (1989).

    Article  CAS  Google Scholar 

  29. Paxinos, G. & Tork, I. Neuroanatomical nomenclature. Trends Neurosci. 13, 169 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the National Cancer Institute, NIH grants MH63104 (EDH) and EY14988, and the Culpeper Medical Scientist Award of the Rockefeller Brothers Foundation (to R.N.V.G.). We thank R. Seeley for advice, R. Awashti for help in the fertility assays, and R. Frederickson for help in preparation of the figures.

Author information

Authors and Affiliations

Authors

Contributions

R.N.V.G., S.V.K., E.D.H., R.W., J.B.H., L.J.M. and C.L.S. designed the experiments, S.V.K., S.P., M.P.H. and J.W.B. performed the experiments, and R.V.G., E.D.H. and C.L.S. wrote the paper.

Note: Supplementary information is available on the Nature Genetics website.

Corresponding author

Correspondence to Colin L Stewart.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1–4 (PDF 451 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlov, S., Bogenpohl, J., Howell, M. et al. The imprinted gene Magel2 regulates normal circadian output. Nat Genet 39, 1266–1272 (2007). https://doi.org/10.1038/ng2114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng2114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing