Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Methods and strategies for analyzing copy number variation using DNA microarrays

Abstract

The association of DNA copy-number variation (CNV) with specific gene function and human disease has been long known, but the wide scope and prevalence of this form of variation has only recently been fully appreciated. The latest studies using microarray technology have demonstrated that as much as 12% of the human genome and thousands of genes are variable in copy number, and this diversity is likely to be responsible for a significant proportion of normal phenotypic variation. Current challenges involve developing methods not only for detecting and cataloging CNVs in human populations at increasingly higher resolution but also for determining the association of CNVs with biological function, recent human evolution, and common and complex human disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Array-CGH profiles of a small region of chromosome 18 for two normal DNAs.

Similar content being viewed by others

References

  1. Jacobs, P.A., Baikie, A.G., Court Brown, W.M. & Strong, J.A. The somatic chromosomes in mongolism. Lancet 1, 710 (1959).

    Article  CAS  Google Scholar 

  2. Kunze, J. Neurological disorders in patients with chromosomal anomalies. Neuropediatrics 11, 203–249 (1980).

    Article  CAS  Google Scholar 

  3. Lejeune, J., Lafourcade, J., Berger, R. & Rethore, M.A. [The crying cat syndrome and its reciprocal] [in French] Ann. Genet. 8, 11–15 (1965).

    CAS  PubMed  Google Scholar 

  4. Sedano, H.O., Look, R.A., Carter, C. & Cohen, M.M. Jr. B group short-arm deletion syndrome. Birth Defects Orig. Artic. Ser. 7, 89–97 (1971).

    CAS  PubMed  Google Scholar 

  5. Morton, C.C., Corey, L.A., Nance, W.E. & Brown, J.A. Quinacrine mustard and nucleolar organizer region heteromorphisms in twins. Acta Genet. Med. Gemellol. (Roma) 30, 39–49 (1981).

    Article  CAS  Google Scholar 

  6. Verma, R.S., Dosik, H. & Lubs, H.A. Size variation polymorphisms of the short arm of human acrocentric chromosomes determined by R-banding by fluorescence using acridine orange (RFA). Hum. Genet. 38, 231–234 (1977).

    Article  CAS  Google Scholar 

  7. Edwards, A., Civitello, A., Hammond, H.A. & Caskey, C.T. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am. J. Hum. Genet. 49, 746–756 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kwok, P.Y., Deng, Q., Zakeri, H., Taylor, S.L. & Nickerson, D.A. Increasing the information content of STS-based genome maps: identifying polymorphisms in mapped STSs. Genomics 31, 123–126 (1996).

    Article  CAS  Google Scholar 

  9. Mir, K.U. & Southern, E.M. Sequence variation in genes and genomic DNA: methods for large-scale analysis. Annu. Rev. Genomics Hum. Genet. 1, 329–360 (2000).

    Article  CAS  Google Scholar 

  10. Taillon-Miller, P., Gu, Z., Li, Q., Hillier, L. & Kwok, P.Y. Overlapping genomic sequences: a treasure trove of single-nucleotide polymorphisms. Genome Res. 8, 748–754 (1998).

    Article  CAS  Google Scholar 

  11. Wang, D.G. et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077–1082 (1998).

    Article  CAS  Google Scholar 

  12. Freeman, J.L. et al. Copy number variation: new insights in genome diversity. Genome Res. 16, 949–961 (2006).

    Article  CAS  Google Scholar 

  13. Iafrate, A.J. et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951 (2004).

    Article  CAS  Google Scholar 

  14. Khaja, R. et al. Genome assembly comparison identifies structural variants in the human genome. Nat. Genet. 38, 1413–1418 (2006).

    Article  CAS  Google Scholar 

  15. Locke, D.P. et al. Linkage disequilibrium and heritability of copy-number polymorphisms within duplicated regions of the human genome. Am. J. Hum. Genet. 79, 275–290 (2006).

    Article  CAS  Google Scholar 

  16. Perry, G.H. et al. Hotspots for copy number variation in chimpanzees and humans. Proc. Natl. Acad. Sci. USA 103, 8006–8011 (2006).

    Article  CAS  Google Scholar 

  17. Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

    Article  CAS  Google Scholar 

  18. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  Google Scholar 

  19. Sharp, A.J., Cheng, Z. & Eichler, E.E. Structural variation of the human genome. Annu. Rev. Genomics Hum. Genet. 7, 407–442 (2006).

    Article  CAS  Google Scholar 

  20. Tuzun, E. et al. Fine-scale structural variation of the human genome. Nat. Genet. 37, 727–732 (2005).

    Article  CAS  Google Scholar 

  21. Wong, K.K. et al. A comprehensive analysis of common copy-number variations in the human genome. Am. J. Hum. Genet. 80, 91–104 (2007).

    Article  CAS  Google Scholar 

  22. Kallioniemi, O.P. et al. Comparative genomic hybridization: a rapid new method for detecting and mapping DNA amplification in tumors. Semin. Cancer Biol. 4, 41–46 (1993).

    CAS  PubMed  Google Scholar 

  23. Kallioniemi, A., Visakorpi, T., Karhu, R., Pinkel, D. & Kallioniemi, O.P. Gene copy number analysis by fluorescence in situ hybridization and comparative genomic hybridization. Methods 9, 113–121 (1996).

    Article  CAS  Google Scholar 

  24. Bentley, D.R. et al. The physical maps for sequencing human chromosomes 1, 6, 9, 10, 13, 20 and X. Nature 409, 942–943 (2001).

    Article  CAS  Google Scholar 

  25. Cheung, V.G. et al. Integration of cytogenetic landmarks into the draft sequence of the human genome. Nature 409, 953–958 (2001).

    Article  CAS  Google Scholar 

  26. Solinas-Toldo, S. et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosom. Cancer 20, 399–407 (1997).

    Article  CAS  Google Scholar 

  27. Pinkel, D. et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20, 207–211 (1998).

    Article  CAS  Google Scholar 

  28. Sharp, A.J. et al. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77, 78–88 (2005).

    Article  CAS  Google Scholar 

  29. Ylstra, B., van den Ijssel, P., Carvalho, B., Brakenhoff, R.H. & Meijer, G.A. BAC to the future! or oligonucleotides: a perspective for micro array comparative genomic hybridization (array CGH). Nucleic Acids Res. 34, 445–450 (2006).

    Article  CAS  Google Scholar 

  30. Fiegler, H. et al. Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Res. 16, 1566–1574 (2006).

    Article  CAS  Google Scholar 

  31. Ishkanian, A.S. et al. A tiling resolution DNA microarray with complete coverage of the human genome. Nat. Genet. 36, 299–303 (2004).

    Article  CAS  Google Scholar 

  32. Kauraniemi, P., Barlund, M., Monni, O. & Kallioniemi, A. New amplified and highly expressed genes discovered in the ERBB2 amplicon in breast cancer by cDNA microarrays. Cancer Res. 61, 8235–8240 (2001).

    CAS  PubMed  Google Scholar 

  33. Monni, O. et al. Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer. Proc. Natl. Acad. Sci. USA 98, 5711–5716 (2001).

    Article  CAS  Google Scholar 

  34. Pollack, J.R. et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat. Genet. 23, 41–46 (1999).

    Article  CAS  Google Scholar 

  35. Porkka, K., Saramaki, O., Tanner, M. & Visakorpi, T. Amplification and overexpression of Elongin C gene discovered in prostate cancer by cDNA microarrays. Lab. Invest. 82, 629–637 (2002).

    Article  CAS  Google Scholar 

  36. Squire, J.A. et al. High-resolution mapping of amplifications and deletions in pediatric osteosarcoma by use of CGH analysis of cDNA microarrays. Genes Chromosom. Cancer 38, 215–225 (2003).

    Article  CAS  Google Scholar 

  37. Dhami, P. et al. Exon array CGH: detection of copy-number changes at the resolution of individual exons in the human genome. Am. J. Hum. Genet. 76, 750–762 (2005).

    Article  CAS  Google Scholar 

  38. Mantripragada, K.K., Buckley, P.G., Jarbo, C., Menzel, U. & Dumanski, J.P. Development of NF2 gene specific, strictly sequence defined diagnostic microarray for deletion detection. J. Mol. Med. 81, 443–451 (2003).

    Article  CAS  Google Scholar 

  39. Carvalho, B., Ouwerkerk, E., Meijer, G.A. & Ylstra, B. High resolution microarray comparative genomic hybridisation analysis using spotted oligonucleotides. J. Clin. Pathol. 57, 644–646 (2004).

    Article  CAS  Google Scholar 

  40. Lucito, R. et al. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res. 13, 2291–2305 (2003).

    Article  CAS  Google Scholar 

  41. Gribble, S.M. et al. Ultra-high resolution array painting facilitates breakpoint sequencing. J. Med. Genet. 44, 51–58 (2007).

    Article  CAS  Google Scholar 

  42. International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  43. Nannya, Y. et al. A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res. 65, 6071–6079 (2005).

    Article  CAS  Google Scholar 

  44. Komura, D. et al. Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Res. 16, 1575–1584 (2006).

    Article  CAS  Google Scholar 

  45. Conrad, D.F., Andrews, T.D., Carter, N.P., Hurles, M.E. & Pritchard, J.K. A high-resolution survey of deletion polymorphism in the human genome. Nat. Genet. 38, 75–81 (2006).

    Article  CAS  Google Scholar 

  46. McCarroll, S.A. et al. Common deletion polymorphisms in the human genome. Nat. Genet. 38, 86–92 (2006).

    Article  CAS  Google Scholar 

  47. Vermeesch, J.R. et al. Molecular karyotyping: array CGH quality criteria for constitutional genetic diagnosis. J. Histochem. Cytochem. 53, 413–422 (2005).

    Article  CAS  Google Scholar 

  48. Price, T.S. et al. SW-ARRAY: a dynamic programming solution for the identification of copy-number changes in genomic DNA using array comparative genome hybridization data. Nucleic Acids Res. 33, 3455–3464 (2005).

    Article  CAS  Google Scholar 

  49. Olshen, A.B., Venkatraman, E.S., Lucito, R. & Wigler, M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5, 557–572 (2004).

    Article  Google Scholar 

  50. Scherer, S.W. et al. Challenges and standards in integrating surveys of structural variation. Nat. Genet. 39, S7–S15 (2007).

    Article  CAS  Google Scholar 

  51. Service, R.F. Gene sequencing: the race for the $1000 genome. Science 311, 1544–1546 (2006).

    Article  CAS  Google Scholar 

  52. Shendure, J., Mitra, R.D., Varma, C. & Church, G.M. Advanced sequencing technologies: methods and goals. Nat. Rev. Genet. 5, 335–344 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank H. Fiegler, R. Redon and M. Hurles for critical reading of the manuscript. N.P.C. is supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, N. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet 39 (Suppl 7), S16–S21 (2007). https://doi.org/10.1038/ng2028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng2028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing