Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Absence of integrin α7 causes a novel form of muscular dystrophy

Abstract

Integrin α7β1 is a specific cellular receptor for the basement membrane protein laminin-1 (refs 1,2), as well as for the laminin isoforms -2 and -4 (ref. 3). The α7 subunit is expressed mainly in skeletal and cardiac muscle4 and has been suggested to be involved in differentiation and migration processes during myogenesis5,6.Three cytoplasmic and two extracellular splice variants that have been described are developmentally regulated and expressed in different sites in the muscle79. In adult muscle, the α7A and α7B subunits are concentrated in myotendinous junctions10 but can also be detected in neuromuscular junctions and along the sarcolemmal membrane11. To study the potential involvement of α7 integrin during myogenesis and its role in muscle integrity and function, we generated a null allele of the α7 gene (ItgaT) in the germline of mice by homologous recombination in embryonic stem (ES) cells. Surprisingly, mice homozygous for the mutation are viable and fertile, indicating that the α7β1 integrin is not essential for myogenesis. However, histological analysis of skeletal muscle revealed typical symptoms of a progressive muscular dystrophy starting soon after birth, but with a distinct variability in different muscle types. The observed histopathological changes strongly indicate an impairment of function of the myotendinous junctions. These findings demonstrate that αβ1 integrin represents an indispensable linkage between the muscle fibre and the extracellular matrix that is independent of the dystrophin–dystroglycan complex–mediated interaction of the cytoskeleton with the muscle basement membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. von der Mark, H. et al. Skeletal myoblasts utilize a novel beta 1-series integrin and not alpha 6 beta 1 for binding to the E8 and T8 fragments of laminin. J. Biol. Chem. 266, 23593–23601 (1991).

    CAS  PubMed  Google Scholar 

  2. Kramer, R.H. et al. Laminin-binding integrin alpha 7 beta 1: functional characterization and expression in normal and malignant melanocytes. Cell Regul. 2, 805–817 (1991).

    Article  CAS  Google Scholar 

  3. Yao, C.C., Ziober, B.L., Squillace, R.M. & Kramer, R.H. Alphα integrin mediates cell adhesion and migration on specific laminin isoforms. J. Biol. Chem. 271, 25598–25603 (1996).

    Article  CAS  Google Scholar 

  4. Song, W.K., Wang, W., Foster, R.F., Bielser, D.A. & Kaufman, S.J. H36-alpha 7 is a novel integrin alpha chain that is developmentally regulated during skeletal myogenesis. J. Cell Biol. 117, 643–657 (1992).

    Article  CAS  Google Scholar 

  5. Ocalan, M., Goodman, S.L., Kuhl, U., Hauschka, S.D. & von der Mark, K. Laminin alters cell shape and stimulates motility and proliferation of murine skeletal myoblasts. Deiv. Biol. 125, 158–167 (1988).

    Article  CAS  Google Scholar 

  6. Goodman, S.L., Risse, G. & von der Mark, K. The E8 subfragment of laminin promotes locomotion of myoblasts over extracellular matrix. J. Cell Biol. 109, 799–809 (1989).

    Article  CAS  Google Scholar 

  7. Collo, G., Starr, L. & Quaranta, V. A new isoform of the laminin receptor integrin alpha 7 beta 1 is developmentally regulated in skeletal muscle. J. Biol. Chem. 268, 19019–19024 (1993).

    CAS  PubMed  Google Scholar 

  8. Ziober, B.L. et al. Alternative extracellular and cytoplasmic domains of the integrin alpha 7 subunit are differentially expressed during development. J. Biol. Chem. 268, 26773–26783 (1993).

    CAS  PubMed  Google Scholar 

  9. Song, W.K., Wang, W., Sato, H., Bielser, D.A. & Kaufman, S.J. Expression of alpha 7 integrin cytoplasmic domains during skeletal muscle development: alternate forms, conformational change, and homologies with serine/threonine kinases and tyrosine phosphatases. J. Cell Sci. 106, 1139–1152 (1993).

    CAS  PubMed  Google Scholar 

  10. Bao, Z.Z., Lakonishok, M., Kaufman, S. & Horwitz, A.F. Alpha 7 beta 1 integrin is a component of the myotendinous junction on skeletal muscle. J. Cell Sci. 106, 579–589 (1993).

    CAS  PubMed  Google Scholar 

  11. Martin, P.T., Kaufman, S.J., Kramer, R.H. & Sanes, J.R. Synaptic integrins in developing, adult, and mutant muscle: selective association of alpha1, alpha7A,and alpha7B integrins with the neuromuscular junction. Dev. Biol. 174, 125–139 (1996).

    Article  CAS  Google Scholar 

  12. Ziober, B.L. & Kramer, R.H. Identification and characterization of the cell type–specific and developmentally regulated alpha7 integrin gene promoter. J. Biol. Chem. 271, 22915–22922 (1996).

    Article  CAS  Google Scholar 

  13. Fässler, R. & Meyer, M. Consequences of lack of beta 1 integrin gene expression in mice. Genes Dev. 9, 1896–1908 (1995).

    Article  Google Scholar 

  14. Stedman, H.H. et al. The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352, 536–539 (1991).

    Article  CAS  Google Scholar 

  15. Tidball, J.G. Assembly of myotendinous junctions in the chick embryo: deposition of P68 is an early event in myotendinous junction formation. Dev. Biol. 163, 447–456 (1994).

    Article  CAS  Google Scholar 

  16. Law, D.J. & Tidball, J.G. Dystrophin deficiency is associated with myotendinous junction defects in prenecrotic and fully regenerated skeletal muscle. Am. J. Pathol. 142, 1513–1523 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Brabant, M.C. & Brower, D.L. PS2 integrin requirements in Drosophila embryo and wing morphogenesis. Dev. Biol. 157, 49–59 (1993).

    Article  CAS  Google Scholar 

  18. Volk, T., Fessler, L.I. & Fessler, J.H. A role for integrin in the formation of sarcomeric cytoarchitecture. Cell. 63, 525–536 (1990).

    Article  CAS  Google Scholar 

  19. Erickson, H.P. & Bourdon, M.A. Tenascin: an extracellular matrix protein prominent in specialized embryonic tissues and tumors. Annu. Rev. Cell Biol. 5, 71–92 (1989).

    Article  CAS  Google Scholar 

  20. Sanes, J.R., Schachner, M. & Covault, J. Expression of several adhesive macromolecules (N-CAM, L1, J1, NILE, uvomorulin, laminin, fibronectin, and a heparan sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscle. J. Cell Biol. 102, 420–431 (1986).

    Article  CAS  Google Scholar 

  21. Settles, D.L., Cihak, R.A. & Erickson, H.P. Tenascin-C expression in dystrophinrelated muscular dystrophy. Muscle Nerve. 19, 147–154 (1996).

    Article  CAS  Google Scholar 

  22. Monaco, A.P. et al. Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 323, 646–650 (1986).

    Article  CAS  Google Scholar 

  23. Ibraghimov-Beskrovnaya, O. et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696–702 (1992).

    Article  CAS  Google Scholar 

  24. Helbling-Leclerc, A. et al. Mutations in the laminin α2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nature Genet. 11, 216–218 (1995).

    Article  CAS  Google Scholar 

  25. Campbell, K.P. Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell 80, 675–679 (1995).

    Article  CAS  Google Scholar 

  26. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428 (1993).

    Article  CAS  Google Scholar 

  27. Echtermeyer, F., Schöber, S., Pöschl, E., von der Mark, H. . & von der Mark, K. Specific induction of cell motility on laminin by alpha 7 integrin. J. Biol. Chem. 271, 2071–2075 (1996).

    Article  CAS  Google Scholar 

  28. Fox, J.W. et al. Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J. 10, 3137–3146 (1991).

    Article  CAS  Google Scholar 

  29. Talts, J.F., Eng, H., Zhang, H.-Y., Faissner, A. & Ekblom, P. Characterization of monoclonal antibodies against tenascin-C: no apparent effect on kidney development in vitro. Int. J. Dev. Biol. 41, 39–48 (1997).

    CAS  PubMed  Google Scholar 

  30. Karnovsky, M. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. Acta Histochem. 88, 25–27 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Mayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, U., Saher, G., Fässler, R. et al. Absence of integrin α7 causes a novel form of muscular dystrophy. Nat Genet 17, 318–323 (1997). https://doi.org/10.1038/ng1197-318

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1197-318

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing