Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mouse model for Zellweger syndrome

Abstract

The cerebro-hepato-renal syndrome of Zellweger is a fatal inherited disease caused by deficient import of peroxisomal matrix proteins. The pathogenic mechanisms leading to extreme hypotonia, severe mental retardation and early death are unknown. We generated a Zellweger animal model through inactivation of the murine Pxr1 gene (formally known as Pex5) that encodes the import receptor for most peroxisomal matrix proteins. Pxr1−/− mice lacked morphologically identifiable peroxisomes and exhibited the typical biochemical abnormalities of Zellweger patients. They displayed intrauterine growth retardation, were severely hypotonic at birth and died within 72 hours. Analysis of the neocortex revealed impaired neuronal migration and maturation and extensive apoptotic death of neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reddy, J.K. & Mannaerts, G.P. Peroxisomal lipid metabolism. Annu. Rev. Nutr. 14, 343–370 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Mannaerts, G.P. & van Veldhoven, P.P. Metabolic role of mammalian peroxisomes. in Peroxisomes: Biology and Importance in Toxicology and Medicine (eds Gibson, G. & Lake, B.) 19–62 (Taylor & Francis, London, 1993).

    Google Scholar 

  3. Krisans, S.K. Cell compartimentalization of cholesterol biosynthesis, in Peroxisomes: Biology and Role in Toxicology and Disease (eds Reddy, J. K., Suga, T., Mannaerts, G.P., Lazarow, P.B. & Subramani, S.) 142–164 (New York Academy of Sciences, New York, 1996).

    Google Scholar 

  4. Subramani, S. Protein import into peroxisomes and biogenesis of the organelle. Annu. Rev. Cell Biol. 9, 445–478 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Subramani, S. Protein translocation into peroxisomes. J. Biol. Chem. 271, 32483–32486 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Distel, B. et al. A unified nomenclature for peroxisome biogenesis factors. J. Cell Biol. 135, 1–3 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Braverman, N., Dodt, G., Gould, S.J. & Valle, D. Disorders of peroxisome biogenesis. Hum. Mol. Genet. 4, 1791–1798 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Wanders, R.J.A., Barth, P.G., Schutgens, R.B.H. & Tager, J.M. Peroxisomal disorders, in Peroxisomes: Biology and Importance in Toxicology and Medicine (eds Gibson, G. & Lake, B.) 63–98 (Taylor & Francis, London, 1993).

    Google Scholar 

  9. Lazarow, P. & Moser, H. Disorders of peroxisomal biogenesis, in The Metabolic Basis of Inherited Disease (eds Beaudet, A. L., Scriver, C.R., Sly, W.S. & Valle, D.) 1479–1509 (McGraw-Hill, New York, 1989).

    Google Scholar 

  10. Heymans, H.S.A., Schutgens, R.B.H., Tan, R., van den Bosch, H. & Borst, P. Severe plasmalogen deficiency in tissues of infants without peroxisomes (Zellweger syndrome). Nature 306, 69–70 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Powers, J.M. The pathology of peroxisomal disorders with pathogenetic considerations. J. Neuropathol. Exp. Neurol. 54, 710–719 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Evrard, P., Caviness, V.S., Prats-Vinas, J. & Lyon, G. The mechanism of arrest of neuronal migration in the Zellweger malformation: an hypothesis based upon cytoarchitectonic analysis. Acta Neuropathol. 41, 109–117 (1978).

    Article  CAS  PubMed  Google Scholar 

  13. Dodt, G. et al. Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nature Genet. 9, 115–125 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Fransen, M. et al. Identification and characterization of the putative human peroxisomal C-terminal targeting signal import receptor. J. Biol. Chem. 270, 7731–7736 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Wiemer, E.A.C. et al. Human peroxisomal targeting signal-1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders. J. Cell Biol. 130, 51–65 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Brocard, C., Kragler, F., Simon, M.M., Schuster, T. & Hartig, A. The tetratricopeptide repeat-domain of the PAS10 protein of Saccharomyces cerevisiae is essential for binding the peroxisomal targeting signal-SKL. Biochem. Biophys. Res. Commun. 204, 1016–1022 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Baker, J., Liu, J., Robertson, E.J. & Efstratiadis, A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73–82 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Powell-Braxton, L. et al. IGF-1 is required for normal embryonic growth in mice. Genes Dev. 7, 2609–2617 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Goldstein, J.L. & Brown, M.S. Regulation of the mevalonate pathway. Nature 343, 425–430 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Carlberg, M. et al. Mevalonic acid is limiting for N-linked glycosylation and translocation of the insulin-like growth factor-1 receptor to the cell surface. J. Biol. Chem. 271, 17453–17462 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Fahimi, H.D. Cytochemical localization of peroxidatic activity of catalase in rat hepatic microbodies (peroxisomes). J. Cell Biol. 43, 275–288 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wiemer, E.A.C. et al. Presence of peroxisomal membrane proteins in liver and fibroblasts from patients with the Zellweger syndrome and related disorders: evidence for the existence of peroxisomal ghosts. Eur. J. Cell Biol. 50, 407–417 (1989).

    CAS  PubMed  Google Scholar 

  23. Espeel, M. et al. Immunolocalization of a 43 kDa peroxisomal membrane protein in the liver of patients with generalized peroxisomal disorders. Eur. J. Cell Biol. 67, 319–327 (1995).

    CAS  PubMed  Google Scholar 

  24. Johnson, A.B., Schaumburg, H.H. & Powers, J.M. Histochemical characteristics of the striated inclusions of adrenoleukodystrophy. J. Histochem. Cytochem. 24, 725–730 (1976).

    Article  CAS  PubMed  Google Scholar 

  25. Powers, J.M., Tummons, R.C., Caviness, V.S., Moser, A.B. & Moser, H.W. Structural and chemical alterations in the cerebral maldevelopment of fetal cerebro-hepatorenal (Zellweger) syndrome. J. Neuropathol. Exp. Neurol. 48, 270–289 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Gressens, P. et al. Early neurogenesis and teratogenesis in whole mouse embryo cultures: histochemical, immunocytological and ultrastructural study of the premigratory neuronal-glial units in normal mouse embryo and in mouse embryos influenced by cocaine and retinoic acid. J. Neuropathol. Exp. Neurol. 51, 206–219 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Agamanolis, D.P., Robinson, H.B.J. & Timmons, G.D. Cerebro-hepato-renal syndrome; report of a case with histochemical and ultrastructural observations. J. Neuropathol. Exp. Neurol. 35, 226–246 (1976).

    Article  CAS  PubMed  Google Scholar 

  28. Roels, F. et al. Cell and tissue heterogeneity in peroxisomal patients, in Functions and Biogenesis of Peroxisomes in Relation to Human Disease (eds Wanders, R.J.A., Schutgens, R.B.H. & Tabak, H.F.) 271–294 (North-Holland, Amsterdam, 1995).

    Google Scholar 

  29. Braverman, N. et al. Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nature Genet. 15, 369–376 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Motley, A.M. et al. Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor. Nature Genet. 15, 377–380 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Purdue, P.E., Zhang, J.W., Skoneczny, M. & Lazarow, P.B. Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor. Nature Genet. 15, 381–384 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Motley, A., Hettema, E., Distel, B. & Tabak, H. Differential protein import deficiencies in human peroxisome assembly disorders. J. Cell Biol. 125, 755–767 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Slawecki, M.L. et al. Identification of three distinct peroxisomal protein import defects in patients with peroxisome biogenesis disorders. J. Cell Sci. 108, 1817–1829 (1995).

    CAS  PubMed  Google Scholar 

  34. Goldfisher, S. et al. Peroxisomal and mitochondrial defects in the cerebro-hepatorenal syndrome. Science 182, 62–64 (1973).

    Article  Google Scholar 

  35. Tybulewisz, V.L., Crawford, C.E., Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  Google Scholar 

  36. Carmeliet, P. et al. Plasminogen activator inhibitor–1 gene-deficient mice: I. Generation by homologous recombination and characterization. J. Clin. Invest. 92, 2746–2755 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van Veldhoven, P.P. Activity measurements of acyl-CoA oxidases in human liver. J. Inherited Metab. Dis. 18, 125–134 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Jones, K.M. & Hajra, A.K. Assay of dihydroxyacetone phosphate acyltransferase with 32P-labeled substrate [letter]. Clin. Chem. 40, 946–947 (1994).

    CAS  PubMed  Google Scholar 

  39. Vanhove, G. et al. Mitochondrial and peroxisomal β-oxidation of the branched chain fatty acid 2-methylpalmitate in rat liver. J. Biol. Chem. 266, 24670–24675 (1991).

    CAS  PubMed  Google Scholar 

  40. van Veldhoven, P. & Bell, R.M. Effect of harvesting methods, growth conditions and growth phase on diacylglycerol levels in cultured human adherent cells. Biochim. Biophys. Acta 959, 185–196 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Kaluzny, M.A., Duncan, L.A., Merritt, M.V. & Epps, D.E. Rapid separation of lipid classes in high yield and purity using bonded phase columns. J. Lipid Res. 26, 135–140 (1985).

    CAS  PubMed  Google Scholar 

  42. Blank, M.L., Cress, E.A., Piantadosi, C. & Snyder, F. A method for the quantitative determination of glycerolipids containing o-alkyl and o-alk-1-enyl moieties. Biochim. Biophys. Acta 380, 208–218 (1975).

    Article  CAS  PubMed  Google Scholar 

  43. Moser, H.W. & Moser, A.B. Measurements of saturated very long chain fatty acids in plasma, in Techniques in Diagnostic Human Biochemical Genetics: A Laboratory Manual (ed Hommes, F. A.) 177–191 (Wiley-Liss, New York, 1991).

    Google Scholar 

  44. Baumgart, E., Völkl, A., Hashimoto, T. & Fahimi, H.D. Biogenesis of peroxisomes: immunocytochemical investigation of peroxisomal membrane proteins in proliferating rat liver peroxisomes and in catalase-negative membrane loops. J. Cell Biol. 108, 2221–2231 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Fahimi, H.D. & Baumgart, E., Peroxisomes. in Electron Microscopic Cytochemistry and Immunocytochemistry in Biomedicine (eds Ogawa, K. & Barka, T.) 491–504 (CRC Press, Boca Raton, Florida, 1996).

    Google Scholar 

  46. Baumgart, E. Morphology of peroxisomes in light and electron microscopy, in Peroxisomes (eds. Latruffe, N. & Bugaut, M.) 37–57 (Springer-Verlag, Heidelberg, 1994).

    Chapter  Google Scholar 

  47. Fransen, M., Brees, C., van Veldhoven, P.P. & Mannaerts, G.P. The visualization of peroxisomal proteins containing a C-terminal targeting sequence on Western blot by using the biotinylated PTS1-receptor. Anal. Biochem. 242, 26–30 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Baes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baes, M., Gressens, P., Baumgart, E. et al. A mouse model for Zellweger syndrome. Nat Genet 17, 49–57 (1997). https://doi.org/10.1038/ng0997-49

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0997-49

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing