Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crossover assurance and crossover interference are distinctly regulated by the ZMM proteins during yeast meiosis

Abstract

Meiotic crossing-over is highly regulated such that each homolog pair typically receives at least one crossover (assurance) and adjacent crossovers are widely spaced (interference). Here we provide evidence that interference and assurance are mechanistically distinct processes that are separated by mutations in a new ZMM (Zip, Msh, Mer) protein from Saccharomyces cerevisiae, Spo16. Like other zmm mutants, spo16 cells have defects in both crossing-over and synaptonemal complex formation. Unlike in previously characterized zmm mutants, the residual crossovers in spo16 cells show interference comparable to that in the wild type. Spo16 interacts with a second ZMM protein, Spo22 (also known as Zip4), and spo22 mutants also show normal interference. Notably, assembly of the MutS homologs Msh4 and Msh5 on chromosomes occurs in both spo16 and spo22, but not in other zmm mutants. We suggest that crossover interference requires the normal assembly of recombination complexes containing Msh4 and Msh5 but does not require Spo16- and Spo22-dependent extension of synaptonemal complexes. In contrast, crossover assurance requires all ZMM proteins and full-length synaptonemal complexes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The spo16 mutant shows meiotic defects similar to those of the zip1 mutant.
Figure 2: The spo16 mutant is deficient in synaptonemal complex assembly.
Figure 3: Spo16 localizes to meiotic chromosomes with other ZMM proteins.
Figure 4: The spo16 mutant is defective at the DSB-SEI transition.
Figure 5: Assembly of ZMM foci in various mutants.
Figure 6: The spo16 and spo22 mutants show crossover interference.
Figure 7: Model of ZMM assembly and function.

Similar content being viewed by others

References

  1. Bishop, D.K. & Zickler, D. Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117, 9–15 (2004).

    Article  CAS  Google Scholar 

  2. Jones, G.H. Chiasmata. in Meiosis (ed. Moens, P.B.) 213–244 (Academic, New York, 1987).

    Chapter  Google Scholar 

  3. Muller, H.J. The mechanisms of crossing over. Am. Nat. 50, 193–221 (1916).

    Article  Google Scholar 

  4. Keeney, S. Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52, 1–53 (2001).

    Article  CAS  Google Scholar 

  5. Hunter, N. & Kleckner, N. The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106, 59–70 (2001).

    Article  CAS  Google Scholar 

  6. Schwacha, A. & Kleckner, N. Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83, 783–791 (1995).

    Article  CAS  Google Scholar 

  7. Szostak, J.W., Orr-Weaver, T.L., Rothstein, R.J. & Stahl, F.W. The double-strand-break repair model for recombination. Cell 33, 25–35 (1983).

    Article  CAS  Google Scholar 

  8. Allers, T. & Lichten, M. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57 (2001).

    Article  CAS  Google Scholar 

  9. Borner, G.V., Kleckner, N. & Hunter, N. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45 (2004).

    Article  Google Scholar 

  10. Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603–754 (1999).

    Article  CAS  Google Scholar 

  11. Padmore, R., Cao, L. & Kleckner, N. Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 66, 1239–1256 (1991).

    Article  CAS  Google Scholar 

  12. Agarwal, S. & Roeder, G.S. Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102, 245–255 (2000).

    Article  CAS  Google Scholar 

  13. Cheng, C.H. et al. SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev. 20, 2067–2081 (2006).

    Article  CAS  Google Scholar 

  14. Chua, P.R. & Roeder, G.S. Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93, 349–359 (1998).

    Article  CAS  Google Scholar 

  15. Nakagawa, T. & Ogawa, H. The Saccharomyces cerevisiae MER3 gene, encoding a novel helicase-like protein, is required for crossover control in meiosis. EMBO J. 18, 5714–5723 (1999).

    Article  CAS  Google Scholar 

  16. Perry, J., Kleckner, N. & Borner, G.V. Bioinformatic analyses implicate the collaborating meiotic crossover/chiasma proteins Zip2, Zip3, and Spo22/Zip4 in ubiquitin labeling. Proc. Natl. Acad. Sci. USA 102, 17594–17599 (2005).

    Article  CAS  Google Scholar 

  17. Snowden, T., Acharya, S., Butz, C., Berardini, M. & Fishel, R. hMSH4-hMSH5 recognizes Holliday Junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol. Cell 15, 437–451 (2004).

    Article  CAS  Google Scholar 

  18. Storlazzi, A., Xu, L., Schwacha, A. & Kleckner, N. Synaptonemal complex (SC) component Zip1 plays a role in meiotic recombination independent of SC polymerization along the chromosomes. Proc. Natl. Acad. Sci. USA 93, 9043–9048 (1996).

    Article  CAS  Google Scholar 

  19. Sym, M., Engebrecht, J.A. & Roeder, G.S. ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72, 365–378 (1993).

    Article  CAS  Google Scholar 

  20. Hollingsworth, N.M., Ponte, L. & Halsey, C. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev. 9, 1728–1739 (1995).

    Article  CAS  Google Scholar 

  21. Mazina, O.M., Mazin, A.V., Nakagawa, T., Kolodner, R.D. & Kowalczykowski, S.C. Saccharomyces cerevisiae Mer3 helicase stimulates 3′-5′ heteroduplex extension by Rad51; implications for crossover control in meiotic recombination. Cell 117, 47–56 (2004).

    Article  CAS  Google Scholar 

  22. Novak, J.E., Ross-Macdonald, P.B. & Roeder, G.S. The budding yeast Msh4 protein functions in chromosome synapsis and the regulation of crossover distribution. Genetics 158, 1013–1025 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fung, J.C., Rockmill, B., Odell, M. & Roeder, G.S. Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116, 795–802 (2004).

    Article  CAS  Google Scholar 

  24. Sym, M. & Roeder, G.S. Crossover interference is abolished in the absence of a synaptonemal complex protein. Cell 79, 283–292 (1994).

    Article  CAS  Google Scholar 

  25. Argueso, J.L., Wanat, J., Gemici, Z. & Alani, E. Competing crossover pathways act during meiosis in Saccharomyces cerevisiae. Genetics 168, 1805–1816 (2004).

    Article  CAS  Google Scholar 

  26. Malavasic, M.J. & Elder, R.T. Complementary transcripts from two genes necessary for normal meiosis in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 10, 2809–2819 (1990).

    Article  CAS  Google Scholar 

  27. Storlazzi, A., Xu, L., Cao, L. & Kleckner, N. Crossover and noncrossover recombination during meiosis: timing and pathway relationships. Proc. Natl. Acad. Sci. USA 92, 8512–8516 (1995).

    Article  CAS  Google Scholar 

  28. Bishop, D.K. RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79, 1081–1092 (1994).

    Article  CAS  Google Scholar 

  29. Smith, A.V. & Roeder, G.S. The yeast Red1 protein localizes to the cores of meiotic chromosomes. J. Cell Biol. 136, 957–967 (1997).

    Article  CAS  Google Scholar 

  30. Ross-Macdonald, P. & Roeder, G.S. Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79, 1069–1080 (1994).

    Article  CAS  Google Scholar 

  31. Tsubouchi, T., Zhao, H. & Roeder, G.S. The meiosis-specific zip4 protein regulates crossover distribution by promoting synaptonemal complex formation together with zip2. Dev. Cell 10, 809–819 (2006).

    Article  CAS  Google Scholar 

  32. Miyazaki, T., Bressan, D.A., Shinohara, M., Haber, J.E. & Shinohara, A. In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair. EMBO J. 23, 939–949 (2004).

    Article  CAS  Google Scholar 

  33. Shinohara, M., Gasior, S.L., Bishop, D.K. & Shinohara, A. Tid1/Rdh54 promotes colocalization of rad51 and dmc1 during meiotic recombination. Proc. Natl. Acad. Sci. USA 97, 10814–10819 (2000).

    Article  CAS  Google Scholar 

  34. Oh, S.D. et al. BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130, 259–272 (2007).

    Article  CAS  Google Scholar 

  35. Keeney, S., Giroux, C.N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997).

    Article  CAS  Google Scholar 

  36. Tsubouchi, T. & Roeder, G.S. A synaptonemal complex protein promotes homology-independent centromere coupling. Science 308, 870–873 (2005).

    Article  CAS  Google Scholar 

  37. Blat, Y., Protacio, R.U., Hunter, N. & Kleckner, N. Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 111, 791–802 (2002).

    Article  CAS  Google Scholar 

  38. Kleckner, N. Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex. Chromosoma 115, 175–194 (2006).

    Article  Google Scholar 

  39. Rockmill, B., Sym, M., Scherthan, H. & Roeder, G.S. Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes Dev. 9, 2684–2695 (1995).

    Article  CAS  Google Scholar 

  40. Malkova, A. et al. Gene conversion and crossing over along the 405-kb left arm of Saccharomyces cerevisiae chromosome VII. Genetics 168, 49–63 (2004).

    Article  CAS  Google Scholar 

  41. Page, S.L. & Hawley, R.S. c(3)G encodes a Drosophila synaptonemal complex protein. Genes Dev. 15, 3130–3143 (2001).

    Article  CAS  Google Scholar 

  42. King, J.S. & Mortimer, R.K. A polymerization model of chiasma interference and corresponding computer simulation. Genetics 126, 1127–1138 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shinohara, M., Sakai, K., Shinohara, A. & Bishop, D.K. Crossover interference in Saccharomyces cerevisiae requires a TID1/RDH54- and DMC1-dependent pathway. Genetics 163, 1273–1286 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808 (1994).

    Article  CAS  Google Scholar 

  45. De Antoni, A. & Gallwitz, D. A novel multi-purpose cassette for repeated integrative epitope tagging of genes in Saccharomyces cerevisiae. Gene 246, 179–185 (2000).

    Article  CAS  Google Scholar 

  46. Shinohara, M., Sakai, K., Ogawa, T. & Shinohara, A. The mitotic DNA damage checkpoint proteins Rad17 and Rad24 are required for repair of double-strand breaks during meiosis in yeast. Genetics 164, 855–865 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hayase, A. et al. A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1. Cell 119, 927–940 (2004).

    Article  CAS  Google Scholar 

  48. Shinohara, A., Ogawa, H. & Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69, 457–470 (1992).

    Article  CAS  Google Scholar 

  49. Papazian, H. The analysis of tetrads data. Genetics 37, 175–188 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Kleckner and members of the Shinohara laboratory for critical discussion, T. Tsubouchi and G.S. Roeder for sharing unpublished results, N. Kleckner (Harvard University) for providing zip1::LEU2 and D. Bishop (University Chicago) for materials used in this study. We are also indebted to A. Murakami, M. Kitamura, Y. Uegaki and A. Okabe for their technical assistance. This work was supported by a Grant-in-Aid from the Ministry of Education, Science, Sport and Culture to A.S. and M.S. and by US National Institutes of Health/National Institute of General Medical Sciences grant GM074223 to N.H.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and A.S. designed the experiments. M.S. carried out genetic, cytological and physical studies (for Figs. 1,2,3,5, and 6). S.O. performed two-dimensional analysis (for Fig. 4). M.S., N.H. and A.S. analyzed the data and were responsible for manuscript preparation.

Corresponding author

Correspondence to Akira Shinohara.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–7 and Supplementary Figure 1 (PDF 168 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinohara, M., Oh, S., Hunter, N. et al. Crossover assurance and crossover interference are distinctly regulated by the ZMM proteins during yeast meiosis. Nat Genet 40, 299–309 (2008). https://doi.org/10.1038/ng.83

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.83

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing