Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targets and dynamics of promoter DNA methylation during early mouse development

Abstract

DNA methylation is extensively reprogrammed during the early phases of mammalian development, yet genomic targets of this process are largely unknown. We optimized methylated DNA immunoprecipitation for low numbers of cells and profiled DNA methylation during early development of the mouse embryonic lineage in vivo. We observed a major epigenetic switch during implantation at the transition from the blastocyst to the postimplantation epiblast. During this period, DNA methylation is primarily targeted to repress the germline expression program. DNA methylation in the epiblast is also targeted to promoters of lineage-specific genes such as hematopoietic genes, which are subsequently demethylated during terminal differentiation. De novo methylation during early embryogenesis is catalyzed by Dnmt3b, and absence of DNA methylation leads to ectopic gene activation in the embryo. Finally, we identify nonimprinted genes that inherit promoter DNA methylation from parental gametes, suggesting that escape of post-fertilization DNA methylation reprogramming is prevalent in the mouse genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Profiling of DNA methylation during early mouse embryogenesis.
Figure 2: De novo CpG island methylation in epiblast cells.
Figure 3: Promoter DNA methylation at hematopoietic genes is erased during hematopoietic differentiation.
Figure 4: Inheritance of promoter DNA methylation from oocytes at nonimprinted genes.
Figure 5: Promoter DNA methylation mediated by Dnmt3b maintains gene repression in vivo.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Lei, H. et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122, 3195–3205 (1996).

    CAS  PubMed  Google Scholar 

  3. Okano, M., Bell, D.W., Haber, D.A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Mayer, W., Niveleau, A., Walter, J., Fundele, R. & Haaf, T. Demethylation of the zygotic paternal genome. Nature 403, 501–502 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Oswald, J. et al. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10, 475–478 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Rougier, N. et al. Chromosome methylation patterns during mammalian preimplantation development. Genes Dev. 12, 2108–2113 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dean, W. et al. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl. Acad. Sci. USA 98, 13734–13738 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Illingworth, R. et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol. 6, e22 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 39, 457–466 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Shen, L. et al. Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet. 3, 2023–2036 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Farthing, C.R. et al. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet. 4, e1000116 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mohn, F. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755–766 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Bhutani, N. et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463, 1042–1047 (2009).

    Article  Google Scholar 

  15. Mikkelsen, T.S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oda, M. et al. DNA methylation regulates long-range gene silencing of an X-linked homeobox gene cluster in a lineage-specific manner. Genes Dev. 20, 3382–3394 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brunner, A.L. et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res. 19, 1044–1056 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jirtle, R.L. & Skinner, M.K. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8, 253–262 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lane, N. et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35, 88–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Hammoud, S.S. et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473–478 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Puschendorf, M. et al. PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat. Genet. 40, 411–420 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Popp, C. et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463, 1101–1105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Ball, M.P. et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol. 27, 361–368 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laurent, L. et al. Dynamic changes in the human methylome during differentiation. Genome Res. 20, 320–331 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ng, R.K. et al. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat. Cell Biol. 10, 1280–1290 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, M.S. et al. DNA demethylation in hormone-induced transcriptional derepression. Nature 461, 1007–1012 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Métivier, R. et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45–50 (2008).

    Article  PubMed  Google Scholar 

  30. Kato, Y. et al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum. Mol. Genet. 16, 2272–2280 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Watanabe, D., Suetake, I., Tada, T. & Tajima, S. Stage- and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis. Mech. Dev. 118, 187–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Nichols, J., Silva, J., Roode, M. & Smith, A. Suppression of Erk signaling promotes ground state pluripotency in the mouse embryo. Development 136, 3215–3222 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brons, I.G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Tesar, P.J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Bao, S. et al. Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature 461, 1292–1295 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Dahl, J.A., Reiner, A.H., Klungland, A., Wakayama, T. & Collas, P. Histone H3 lysine 27 methylation asymmetry on developmentally-regulated promoters distinguish the first two lineages in mouse preimplantation embryos. PLoS ONE 5, e9150 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hayashi, K., Lopes, S.M., Tang, F. & Surani, M.A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3, 391–401 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Li, J.Y. et al. Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol. Cell. Biol. 27, 8748–8759 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maatouk, D.M. et al. DNA methylation is a primary mechanism for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages. Development 133, 3411–3418 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Straussman, R. et al. Developmental programming of CpG island methylation profiles in the human genome. Nat. Struct. Mol. Biol. 16, 564–571 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Simpson, A.J., Caballero, O.L., Jungbluth, A., Chen, Y.T. & Old, L.J. Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer 5, 615–625 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Waterland, R.A. et al. Epigenomic profiling indicates a role for DNA methylation in early postnatal liver development. Hum. Mol. Genet. 18, 3026–3038 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Boyer, L.A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, T.I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hirasawa, R. et al. Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev. 22, 1607–1616 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Skinner, M.K. & Guerrero-Bosagna, C. Environmental signals and transgenerational epigenetics. Epigenomics 1, 111–117 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Smith, R.J. et al. The mouse Zac1 locus: basis for imprinting and comparison with human ZAC. Gene 292, 101–112 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Hattori, N. et al. Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J. Biol. Chem. 279, 17063–17069 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Huang da, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  PubMed  Google Scholar 

  50. Smyth, G.K. & Speed, T. Normalization of cDNA microarray data. Methods 31, 265–273 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Vicente for assistance with the flow cytometry, T. Gostan for help with R programming, and E. Posfai and R. Hirasawa for advice on embryo dissection. This research was supported by the Epigenome NoE (LSHG-CT-2006-037415), Novartis Research Foundation, Centre National de la Recherche Scientifique (CNRS), Agence Nationale de la Recherche (ANR-07-BLAN-0052-02), Association pour la Recherche sur le Cancer (ARC contract 4868) and European Chemical Industry Council (CEFIC) Long Research Initiative (LRI-EMSG49-CNRS-08).

Author information

Authors and Affiliations

Authors

Contributions

J.B. performed all experiments and data analysis and contributed to the writing of the manuscript. S.G. developed R scripts and participated in data analysis. Y.L., H.C. and H.S. prepared samples from Dnmt mutant embryos. D.S. and T.F. participated in the study design and writing of the manuscript. M.W. designed and supervised the study, participated in data analysis and wrote the manuscript.

Corresponding author

Correspondence to Michael Weber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Table 2 (PDF 4400 kb)

Supplementary Table 1

Genes with methylated promoters identified in early mouse embryos. (ZIP 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgel, J., Guibert, S., Li, Y. et al. Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 42, 1093–1100 (2010). https://doi.org/10.1038/ng.708

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.708

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing