Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transposon mutagenesis identifies genetic drivers of BrafV600E melanoma

Abstract

Although nearly half of human melanomas harbor oncogenic BRAFV600E mutations, the genetic events that cooperate with these mutations to drive melanogenesis are still largely unknown. Here we show that Sleeping Beauty (SB) transposon-mediated mutagenesis drives melanoma progression in BrafV600E mutant mice and identify 1,232 recurrently mutated candidate cancer genes (CCGs) from 70 SB-driven melanomas. CCGs are enriched in Wnt, PI3K, MAPK and netrin signaling pathway components and are more highly connected to one another than predicted by chance, indicating that SB targets cooperative genetic networks in melanoma. Human orthologs of >500 CCGs are enriched for mutations in human melanoma or showed statistically significant clinical associations between RNA abundance and survival of patients with metastatic melanoma. We also functionally validate CEP350 as a new tumor-suppressor gene in human melanoma. SB mutagenesis has thus helped to catalog the cooperative molecular mechanisms driving BRAFV600E melanoma and discover new genes with potential clinical importance in human melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SB-mediated mutagenesis promotes melanoma formation in BrafV600E mutant mice.
Figure 2: Whole-exome sequencing of SB|Braf genomes.
Figure 3: Landscape of candidate driver genes mutated in SB|Braf melanoma.
Figure 4: Reduced netrin signaling in SB|Braf melanoma extends the phenotypic consequence of alterations in the Rho family of GTPases.
Figure 5: Significant clinical associations between SB|Braf CIS genes, RNA abundance and patient survival.
Figure 6: CEP350 is a melanoma tumor suppressor.

Similar content being viewed by others

Accession codes

Primary accessions

BioProject

Referenced accessions

Gene Expression Omnibus

References

  1. Chin, L., Garraway, L.A. & Fisher, D.E. Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev. 20, 2149–2182 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Yokoyama, S. et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 480, 99–103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Robles-Espinoza, C.D. et al. POT1 loss-of-function variants predispose to familial melanoma. Nat. Genet. 46, 478–481 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Trigueros-Motos, L. Mutations in POT1 predispose to familial cutaneous malignant melanoma. Clin. Genet. 86, 217–218 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Nazarian, R. et al. Melanomas acquire resistance to B-RAFV600E inhibition by RTK or N-RAS upregulation. Nature 468, 973–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wilmott, J.S. et al. BRAFV600E protein expression and outcome from BRAF inhibitor treatment in BRAFV600E metastatic melanoma. Br. J. Cancer 108, 924–931 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Flaherty, K.T., Yasothan, U. & Kirkpatrick, P. Vemurafenib. Nat. Rev. Drug Discov. 10, 811–812 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Damsky, W.E. et al. β-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 20, 741–754 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dankort, D. et al. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 41, 544–552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tran, S.L. et al. Absence of distinguishing senescence traits in human melanocytic nevi. J. Invest. Dermatol. 132, 2226–2234 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berger, M.F. et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 485, 502–506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krauthammer, M. et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat. Genet. 44, 1006–1014 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nikolaev, S.I. et al. Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat. Genet. 44, 133–139 (2012).

    Article  CAS  Google Scholar 

  16. Pleasance, E.D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Prickett, T.D. et al. Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nat. Genet. 41, 1127–1132 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prickett, T.D. et al. Exon capture analysis of G protein–coupled receptors identifies activating mutations in GRM3 in melanoma. Nat. Genet. 43, 1119–1126 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stark, M.S. et al. Characterization of the melanoma miRNAome by deep sequencing. PLoS ONE 5, e9685 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Stark, M.S. et al. Frequent somatic mutations in MAP3K5 and MAP3K9 in metastatic melanoma identified by exome sequencing. Nat. Genet. 44, 165–169 (2012).

    Article  CAS  Google Scholar 

  21. Turajlic, S. et al. Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Res. 22, 196–207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wei, X. et al. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat. Genet. 43, 442–446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Howell, P.M. Jr. et al. Epigenetics in human melanoma. Cancer Control 16, 200–218 (2009).

    Article  PubMed  Google Scholar 

  24. Sigalotti, L. et al. Epigenetics of human cutaneous melanoma: setting the stage for new therapeutic strategies. J. Transl. Med. 8, 56 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yancovitz, M. et al. Intra- and inter-tumor heterogeneity of BRAFV600E mutations in primary and metastatic melanoma. PLoS ONE 7, e29336 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dankort, D. et al. A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev. 21, 379–384 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bosenberg, M. et al. Characterization of melanocyte-specific inducible Cre recombinase transgenic mice. Genesis 44, 262–267 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Dupuy, A.J., Akagi, K., Largaespada, D.A., Copeland, N.G. & Jenkins, N.A. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436, 221–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Dupuy, A.J. et al. A modified Sleeping Beauty transposon system that can be used to model a wide variety of human cancers in mice. Cancer Res. 69, 8150–8156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Starr, T.K. et al. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 323, 1747–1750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Copeland, N.G. & Jenkins, N.A. Harnessing transposons for cancer gene discovery. Nat. Rev. Cancer 10, 696–706 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. March, H.N. et al. Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat. Genet. 43, 1202–1209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Uren, A.G. et al. Large-scale mutagenesis in p19ARF- and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 133, 727–741 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brett, B.T. et al. Novel molecular and computational methods improve the accuracy of insertion site analysis in Sleeping Beauty–induced tumors. PLoS ONE 6, e24668 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mann, K.M. et al. Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proc. Natl. Acad. Sci. USA 109, 5934–5941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Karreth, F.A. et al. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF–induced mouse model of melanoma. Cell 147, 382–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ni, T.K., Landrette, S.F., Bjornson, R.D., Bosenberg, M.W. & Xu, T. Low-copy piggyBac transposon mutagenesis in mice identifies genes driving melanoma. Proc. Natl. Acad. Sci. USA 110, E3640–E3649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Solimini, N.L. et al. Recurrent hemizygous deletions in cancers may optimize proliferative potential. Science 337, 104–109 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McFadden, D.G. et al. Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell 156, 1298–1311 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, G., Aronovich, E.L., Cui, Z., Whitley, C.B. & Hackett, P.B. Excision of Sleeping Beauty transposons: parameters and applications to gene therapy. J. Gene Med. 6, 574–583 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Futreal, P.A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Swanton, C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 72, 4875–4882 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shitashige, M. et al. Traf2- and Nck-interacting kinase is essential for Wnt signaling and colorectal cancer growth. Cancer Res. 70, 5024–5033 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Lelièvre, H., Chevrier, V., Tassin, A.M. & Birnbaum, D. Myeloproliferative disorder FOP-FGFR1 fusion kinase recruits phosphoinositide-3 kinase and phospholipase Cγ at the centrosome. Mol. Cancer 7, 30 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Nan, H. et al. Genome-wide association study identifies nidogen 1 (NID1) as a susceptibility locus to cutaneous nevi and melanoma risk. Hum. Mol. Genet. 20, 2673–2679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Amos, C.I. et al. Genome-wide association study identifies novel loci predisposing to cutaneous melanoma. Hum. Mol. Genet. 20, 5012–5023 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barrett, J.H. et al. Genome-wide association study identifies three new melanoma susceptibility loci. Nat. Genet. 43, 1108–1113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bishop, D.T. et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat. Genet. 41, 920–925 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brown, K.M. et al. Common sequence variants on 20q11.22 confer melanoma susceptibility. Nat. Genet. 40, 838–840 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Falchi, M. et al. Genome-wide association study identifies variants at 9p21 and 22q13 associated with development of cutaneous nevi. Nat. Genet. 41, 915–919 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Macgregor, S. et al. Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3. Nat. Genet. 43, 1114–1118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Teerlink, C. et al. A unique genome-wide association analysis in extended Utah high-risk pedigrees identifies a novel melanoma risk variant on chromosome arm 10q. Hum. Genet. 131, 77–85 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Sabatino, M. et al. Conservation of genetic alterations in recurrent melanoma supports the melanoma stem cell hypothesis. Cancer Res. 68, 122–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Brunner, A.L. et al. Transcriptional profiling of lncRNAs and novel transcribed regions across a diverse panel of archived human cancers. Genome Biol. 13, R75 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Khaitan, D. et al. The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res. 71, 3852–3862 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760–1774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Harrow, J. et al. GENCODE: producing a reference annotation for ENCODE. Genome Biol. 7 (suppl.), S4.1–S4.9 (2006).

    Google Scholar 

  60. Akavia, U.D. et al. An integrated approach to uncover drivers of cancer. Cell 143, 1005–1017 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin, W.M. et al. Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res. 68, 664–673 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Xing, F. et al. Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring V600EBRAF. Oncogene 31, 446–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Sanchez-Garcia, F., Akavia, U.D., Mozes, E. & Pe'er, D. JISTIC: identification of significant targets in cancer. BMC Bioinformatics 11, 189 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Huang, D.W. et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 35, W169–W175 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Araki, H., Knapp, C., Tsai, P. & Print, C.P. GeneSetDB: a comprehensive meta-database, statistical and visualisation framework for gene set analysis. FEBS Open Bio 2, 76–82 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Biankin, A.V. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sanz-Moreno, V. et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell 135, 510–523 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Bogunovic, D. et al. Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc. Natl. Acad. Sci. USA 106, 20429–20434 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Le Clech, M. Role of CAP350 in centriolar tubule stability and centriole assembly. PLoS ONE 3, e3855 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Patel, H., Truant, R., Rachubinski, R.A. & Capone, J.P. Activity and subcellular compartmentalization of peroxisome proliferator-activated receptor α are altered by the centrosome-associated protein CAP350. J. Cell Sci. 118, 175–186 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Lim, J. et al. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125, 801–814 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Vandamme, J., Völkel, P., Rosnoblet, C., Le Faou, P. & Angrand, P.O. Interaction proteomics analysis of Polycomb proteins defines distinct PRC1 complexes in mammalian cells. Mol. Cell. Proteomics 10, M110.002642 (2011).

  74. Danielsen, J.M. et al. Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol. Cell. Proteomics 10, M110.003590 (2010).

    Article  CAS  Google Scholar 

  75. Hutchins, J.R. et al. Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science 328, 593–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Varjosalo, M. et al. The protein interaction landscape of the human CMGC kinase group. Cell Rep. 3, 1306–1320 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Emanuele, M.J. et al. Global identification of modular cullin-RING ligase substrates. Cell 147, 459–474 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Udeshi, N.D. et al. Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol. Cell. Proteomics 11, 148–159 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Woods, N.T. et al. Charting the landscape of tandem BRCT domain–mediated protein interactions. Sci. Signal. 5, rs6 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bandyopadhyay, S. et al. A human MAP kinase interactome. Nat. Methods 7, 801–805 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wagner, S.A. et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell. Proteomics 10, M111.013284 (2011).

    Article  CAS  Google Scholar 

  82. Glatter, T., Wepf, A., Aebersold, R. & Gstaiger, M. An integrated workflow for charting the human interaction proteome: insights into the PP2A system. Mol. Syst. Biol. 5, 237 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yan, X., Habedanck, R. & Nigg, E.A. A complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring. Mol. Biol. Cell 17, 634–644 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stites, E.C. The response of cancers to BRAF inhibition underscores the importance of cancer systems biology. Sci. Signal. 5, pe46 (2012).

    Article  PubMed  CAS  Google Scholar 

  86. Azmi, A.S., Wang, Z., Philip, P.A., Mohammad, R.M. & Sarkar, F.H. Proof of concept: network and systems biology approaches aid in the discovery of potent anticancer drug combinations. Mol. Cancer Ther. 9, 3137–3144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Collier, L.S., Carlson, C.M., Ravimohan, S., Dupuy, A.J. & Largaespada, D.A. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436, 272–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Koboldt, D.C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2008, 2013).

  92. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Knüppel, R., Dietze, P., Lehnberg, W., Frech, K. & Wingender, E. TRANSFAC retrieval program: a network model database of eukaryotic transcription regulating sequences and proteins. J. Comput. Biol. 1, 191–198 (1994).

    Article  PubMed  Google Scholar 

  94. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Irizarry, R.A. et al. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Harrington, D.P. & Fleming, T.R. A class of rank test procedures for censored survival data. Biometrika 69, 553–566 (1982).

    Article  Google Scholar 

  97. Spandidos, A., Wang, X., Wang, H. & Seed, B. PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Res. 38, D792–D799 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Henare, K. et al. Dissection of stromal and cancer cell–derived signals in melanoma xenografts before and after treatment with DMXAA. Br. J. Cancer 106, 1134–1147 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank K. Mann for helpful discussions and for critical reading and editing of the manuscript; M. Eccles (Otago) and the Copeland and Jenkins laboratories in Singapore and Houston for helpful discussions; V. Hearing (National Cancer Institute) for PEP antibodies and L. Chin (Dana-Farber Cancer Institute) for Tyr-creERT2 mice; D. Adams (Sanger Institute), T. Whipp, R. Rance and the Wellcome Trust Sanger Institute sequencing and informatics teams for 454 sequencing and bioinformatics support; K. Rogers, S. Rogers and the Institute for Molecular and Cell Biology Histopathology Core; P. Cheok, N. Lim, D. Chen and C. Wee (Singapore) and H. Lee and E. Freiter (Houston) for assistance with tumor monitoring and animal husbandry; and A. Trevarton (Auckland) for assistance with molecular pathway analysis. Histology work was performed by the Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore. This work was supported in part by the Biomedical Research Council, A*STAR, Singapore (to N.G.C. and N.A.J.), the Cancer Prevention Research Institute of Texas (to N.G.C. and N.A.J.), the Health Research Council of New Zealand, the University of Auckland and the New Zealand Maurice Wilkins Centre (to C.G.P.), the National Cancer Institute (to M.M. and M.W.B.) and the Melanoma Research Alliance (to M.M.). N.G.C. and N.A.J. are also Cancer Prevention Research Institute of Texas Scholars in Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

M.B.M., N.G.C. and N.A.J. designed the study and wrote the manuscript. N.G.C. and N.A.J. directed the research. M.W.B. and M.M. provided essential biological resources and contributed to the experimental design. J.M.W. and M.W.B. performed histological classification and diagnosis of tumors. M.A.B., J.M.W., A.G.R., M.W.B., M.M. and C.G.P. contributed to editing of the manuscript before submission. M.B.M., M.A.B., D.J.J., J.M.W., C.C.K.Y., A.J.D., A.G.R. and C.G.P. performed data analysis. M.A.B., J.Y.N., A.J.D., A.G.R. and C.G.P. provided essential statistical and bioinformatics resources.

Corresponding author

Correspondence to Nancy A Jenkins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–18 and Supplementary Note. (PDF 20420 kb)

Supplementary Tables 1–25

Supplementary Tables 1–25. (XLSX 2512 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mann, M., Black, M., Jones, D. et al. Transposon mutagenesis identifies genetic drivers of BrafV600E melanoma. Nat Genet 47, 486–495 (2015). https://doi.org/10.1038/ng.3275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3275

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research