Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expression of 24,426 human alternative splicing events and predicted cis regulation in 48 tissues and cell lines

Abstract

Alternative pre–messenger RNA splicing influences development, physiology and disease, but its regulation in humans is not well understood, partially because of the limited scale at which the expression of specific splicing events has been measured. We generated the first genome-scale expression compendium of human alternative splicing events using custom whole-transcript microarrays monitoring expression of 24,426 alternative splicing events in 48 diverse human samples. Over 11,700 genes and 9,500 splicing events were differentially expressed, providing a rich resource for studying splicing regulation. An unbiased, systematic screen of 21,760 4-mer to 7-mer words for cis-regulatory motifs identified 143 RNA 'words' enriched near regulated cassette exons, including six clusters of motifs represented by UCUCU, UGCAUG, UGCU, UGUGU, UUUU and AGGG, which map to trans-acting regulators PTB, Fox, Muscleblind, CELF/CUG-BP, TIA-1 and hnRNP F/H, respectively. Each cluster showed a distinct pattern of genomic location and tissue specificity. For example, UCUCU occurs 110 to 35 nucleotides preceding cassette exons upregulated in brain and striated muscle but depleted in other tissues. UCUCU and UGCAUG seem to have similar function but independent action, occurring 5′ and 3′, respectively, of 33% of the cassette exons upregulated in skeletal muscle but co-occurring for only 2%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interrogation of A2BP1 (Fox-1) isoforms on the alternative splicing microarrays.
Figure 2: Alternative splicing characteristics.
Figure 3
Figure 4: Motif identification and enrichment.
Figure 5: Motif enrichment upstream of cassette exons upregulated in human tissues and cell lines.
Figure 6: Motif enrichment downstream of cassette exons upregulated in human tissues and cell lines.
Figure 7: Higher-resolution enrichment of UGCAUG adjacent heart-regulated cassette exons.
Figure 8: Higher-resolution enrichment of UCUCU adjacent regulated cassette exons.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

NCBI Reference Sequence

References

  1. Johnson, J.M. et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302, 2141–2144 (2003).

    Article  CAS  Google Scholar 

  2. Kwan, T. et al. Genome-wide analysis of transcript isoform variation in humans. Nat. Genet. 40, 225–231 (2008).

    Article  CAS  Google Scholar 

  3. Chan, R.C. & Black, D.L. Conserved intron elements repress splicing of a neuron-specific c-src exon in vitro. Mol. Cell. Biol. 15, 6377–6385 (1995).

    Article  CAS  Google Scholar 

  4. Singh, R., Valcarcel, J. & Green, M.R. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 268, 1173–1176 (1995).

    Article  CAS  Google Scholar 

  5. Gooding, C., Roberts, G.C. & Smith, C.W. Role of an inhibitory pyrimidine element and polypyrimidine tract binding protein in repression of a regulated alpha-tropomyosin exon. RNA 4, 85–100 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Underwood, J.G., Boutz, P.L., Dougherty, J.D., Stoilov, P. & Black, D.L. Homologues of the Caenorhabditis elegans Fox-1 protein are neuronal splicing regulators in mammals. Mol. Cell. Biol. 25, 10005–10016 (2005).

    Article  CAS  Google Scholar 

  7. Minovitsky, S., Gee, S.L., Schokrpur, S., Dubchak, I. & Conboy, J.G. The splicing regulatory element, UGCAUG, is phylogenetically and spatially conserved in introns that flank tissue-specific alternative exons. Nucleic Acids Res. 33, 714–724 (2005).

    Article  CAS  Google Scholar 

  8. Martinez-Contreras, R. et al. Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing. PLoS Biol. 4, e21 (2006).

    Article  Google Scholar 

  9. Han, K., Yeo, G., An, P., Burge, C.B. & Grabowski, P.J. A combinatorial code for splicing silencing: UAGG and GGGG motifs. PLoS Biol. 3, e158 (2005).

    Article  Google Scholar 

  10. Ho, T.H. et al. Muscleblind proteins regulate alternative splicing. EMBO J. 23, 3103–3112 (2004).

    Article  CAS  Google Scholar 

  11. Forch, P. et al. The apoptosis-promoting factor TIA-1 is a regulator of alternative pre-mRNA splicing. Mol. Cell 6, 1089–1098 (2000).

    Article  CAS  Google Scholar 

  12. Faustino, N.A. & Cooper, T.A. Identification of putative new splicing targets for ETR-3 using sequences identified by systematic evolution of ligands by exponential enrichment. Mol. Cell. Biol. 25, 879–887 (2005).

    Article  CAS  Google Scholar 

  13. Kuroyanagi, H., Ohno, G., Mitani, S. & Hagiwara, M. The Fox-1 family and SUP-12 coordinately regulate tissue-specific alternative splicing in vivo. Mol. Cell. Biol. 27, 8612–8621 (2007).

    Article  CAS  Google Scholar 

  14. Ule, J. et al. Nova regulates brain-specific splicing to shape the synapse. Nat. Genet. 37, 844–852 (2005).

    Article  CAS  Google Scholar 

  15. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    Article  CAS  Google Scholar 

  16. Pan, Q. et al. Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform. Mol. Cell 16, 929–941 (2004).

    Article  CAS  Google Scholar 

  17. Fagnani, M. et al. Functional coordination of alternative splicing in the mammalian central nervous system. Genome Biol. 8, R108 (2007).

    Article  Google Scholar 

  18. Sugnet, C.W. et al. Unusual intron conservation near tissue-regulated exons found by splicing microarrays. PLOS Comput. Biol. 2, e4 (2006).

    Article  Google Scholar 

  19. Clark, T.A. et al. Discovery of tissue-specific exons using comprehensive human exon microarrays. Genome Biol. 8, R64 (2007).

    Article  Google Scholar 

  20. Griffith, M. et al. ALEXA: a microarray design platform for alternative expression analysis. Nat. Methods 5, 118 (2008).

    Article  CAS  Google Scholar 

  21. Nakahata, S. & Kawamoto, S. Tissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities. Nucleic Acids Res. 33, 2078–2089 (2005).

    Article  CAS  Google Scholar 

  22. Duncan, P.I., Stojdl, D.F., Marius, R.M. & Bell, J.C. In vivo regulation of alternative pre-mRNA splicing by the Clk1 protein kinase. Mol. Cell. Biol. 17, 5996–6001 (1997).

    Article  CAS  Google Scholar 

  23. Rupp, U. et al. Safety and pharmacokinetics of bivatuzumab mertansine in patients with CD44v6-positive metastatic breast cancer: final results of a phase I study. Anticancer Drugs 18, 477–485 (2007).

    Article  CAS  Google Scholar 

  24. Riechelmann, H. et al. Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncol. 44, 823–829 (2008).

    Article  CAS  Google Scholar 

  25. Brudno, M. et al. Computational analysis of candidate intron regulatory elements for tissue-specific alternative pre-mRNA splicing. Nucleic Acids Res. 29, 2338–2348 (2001).

    Article  CAS  Google Scholar 

  26. Yeo, G.W., Van Nostrand, E., Holste, D., Poggio, T. & Burge, C.B. Identification and analysis of alternative splicing events conserved in human and mouse. Proc. Natl. Acad. Sci. USA 102, 2850–2855 (2005).

    Article  CAS  Google Scholar 

  27. Yeo, G.W., Nostrand, E.L. & Liang, T.Y. Discovery and analysis of evolutionarily conserved intronic splicing regulatory elements. PLoS Genet. 3, e85 (2007).

    Article  Google Scholar 

  28. Yeo, G.W. et al. Alternative splicing events identified in human embryonic stem cells and neural progenitors. PLOS Comput. Biol. 3, 1951–1967 (2007).

    Article  CAS  Google Scholar 

  29. Das, D. et al. A correlation with exon expression approach to identify cis-regulatory elements for tissue-specific alternative splicing. Nucleic Acids Res. 35, 4845–4857 (2007).

    Article  CAS  Google Scholar 

  30. Voelker, R.B. & Berglund, J.A. A comprehensive computational characterization of conserved mammalian intronic sequences reveals conserved motifs associated with constitutive and alternative splicing. Genome Res. 17, 1023–1033 (2007).

    Article  CAS  Google Scholar 

  31. Zhang, C. et al. Defining the regulatory network of the tissue-specific splicing factors Fox-1 and Fox-2. Genes Dev. 22, 2550–2563 (2008).

    Article  CAS  Google Scholar 

  32. Liu, H.X., Zhang, M. & Krainer, A.R. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev. 12, 1998–2012 (1998).

    Article  CAS  Google Scholar 

  33. Fairbrother, W.G., Yeh, R.F., Sharp, P.A. & Burge, C.B. Predictive identification of exonic splicing enhancers in human genes. Science 297, 1007–1013 (2002).

    Article  CAS  Google Scholar 

  34. Zhang, W. et al. The functional landscape of mouse gene expression. J. Biol. 3, 21 (2004).

    Article  Google Scholar 

  35. Goren, A. et al. Comparative analysis identifies exonic splicing regulatory sequences–The complex definition of enhancers and silencers. Mol. Cell 22, 769–781 (2006).

    Article  CAS  Google Scholar 

  36. Fairbrother, W.G. et al. RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons. Nucleic Acids Res. 32, W187–W190 (2004).

    Article  CAS  Google Scholar 

  37. Perez, I., Lin, C.H., McAfee, J.G. & Patton, J.G. Mutation of PTB binding sites causes misregulation of alternative 3′ splice site selection in vivo. RNA 3, 764–778 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jensen, K.B., Musunuru, K., Lewis, H.A., Burley, S.K. & Darnell, R.B. The tetranucleotide UCAY directs the specific recognition of RNA by the Nova K-homology 3 domain. Proc. Natl. Acad. Sci. USA 97, 5740–5745 (2000).

    Article  CAS  Google Scholar 

  39. Ule, J. et al. An RNA map predicting Nova-dependent splicing regulation. Nature 444, 580–586 (2006).

    Article  CAS  Google Scholar 

  40. Wheeler, D.L. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 36, D13–D21 (2008).

    Article  CAS  Google Scholar 

  41. Florea, L., Hartzell, G., Zhang, Z., Rubin, G.M. & Miller, W. A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res. 8, 967–974 (1998).

    Article  CAS  Google Scholar 

  42. Kan, Z., Castle, J., Johnson, J.M. & Tsinoremas, N.F. Detection of novel splice forms in human and mouse using cross-species approach. Pac. Symp. Biocomput. 9, 42–53 (2004).

    Google Scholar 

  43. Castle, J. et al. Optimization of oligonucleotide arrays and RNA amplification protocols for analysis of transcript structure and alternative splicing. Genome Biol. 4, R66 (2003).

    Article  Google Scholar 

  44. Hughes, T.R. et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19, 342–347 (2001).

    Article  CAS  Google Scholar 

  45. Weng, L. et al. Rosetta error model for gene expression analysis. Bioinformatics 22, 1111–1121 (2006).

    Article  CAS  Google Scholar 

  46. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

  47. Fehlbaum, P., Guihal, C., Bracco, L. & Cochet, O. A microarray configuration to quantify expression levels and relative abundance of splice variants. Nucleic Acids Res. 33, e47 (2005).

    Article  Google Scholar 

  48. Taylor, J.R. An Introduction to Error Analysis 270 (University Science Books, Mill Valley, California, 1982).

  49. Fairbrother, W.G., Holste, D., Burge, C.B. & Sharp, P.A. Single nucleotide polymorphism-based validation of exonic splicing enhancers. PLoS Biol 2, E268 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Armour, C. Raymond, D. Haynor, V. Emilsson, P. Garrett-Engele, F. Roth, P. Loerch, R. Chen, C. Rohl, M. Tompa, E. Schadt and L. Lim for input, Rosetta's Gene Expression Laboratory microarray hybridization facility for microarray data, and S. Carlson for project management. Funding for T.A.C. provided by R01GM076493.

Author information

Authors and Affiliations

Authors

Contributions

J.M.J. conceived the experiment; J.C.C. and J.M.J. executed the experiment and wrote the paper; J.C.C. designed the microarrays and analyzed the data; J.C.C. and C.Z. identified motifs; J.K.S. and A.V.K. processed and managed data; and A.K. and T.A.C. provided validation experiments.

Corresponding authors

Correspondence to John C Castle or Jason M Johnson.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1, Supplementary Figures 1–6 and Supplementary Note (PDF 1449 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castle, J., Zhang, C., Shah, J. et al. Expression of 24,426 human alternative splicing events and predicted cis regulation in 48 tissues and cell lines. Nat Genet 40, 1416–1425 (2008). https://doi.org/10.1038/ng.264

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.264

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing