Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia

Abstract

Chronic lymphocytic leukemia (CLL) is the most frequent leukemia in adults1,2,3. We have analyzed exome sequencing data from 127 individuals with CLL and Sanger sequencing data from 214 additional affected individuals, identifying recurrent somatic mutations in POT1 (encoding protection of telomeres 1) in 3.5% of the cases, with the frequency reaching 9% when only individuals without IGHV@ mutations were considered. POT1 encodes a component of the shelterin complex and is the first member of this telomeric structure found to be mutated in human cancer. Somatic mutation of POT1 primarily occurs in gene regions encoding the two oligonucleotide-/oligosaccharide-binding (OB) folds and affects key residues required to bind telomeric DNA. POT1-mutated CLL cells have numerous telomeric and chromosomal abnormalities that suggest that POT1 mutations favor the acquisition of the malignant features of CLL cells. The identification of POT1 as a new frequently mutated gene in CLL may facilitate novel approaches for the clinical management of this disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural impact of POT1 somatic mutations.
Figure 2: Biological properties of wild-type POT1 and the Tyr36Asn and Tyr223Cys POT1 mutants.
Figure 3: Chromosomal aberrations in cells from individuals with CLL expressing mutated POT1.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Rozman, C. & Montserrat, E. Chronic lymphocytic leukemia. N. Engl. J. Med. 333, 1052–1057 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Zenz, T., Mertens, D., Kuppers, R., Dohner, H. & Stilgenbauer, S. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat. Rev. Cancer 10, 37–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Pekarsky, Y., Zanesi, N. & Croce, C.M. Molecular basis of CLL. Semin. Cancer Biol. 20, 370–376 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cramer, P. & Hallek, M. Hematological cancer in 2011: new therapeutic targets and treatment strategies. Nat. Rev. Clin. Oncol. 9, 72–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Puente, X.S. et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475, 101–105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Quesada, V. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet. 44, 47–52 (2012).

    Article  CAS  Google Scholar 

  7. Fabbri, G. et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J. Exp. Med. 208, 1389–1401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, L. et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 365, 2497–2506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baumann, P. & Cech, T.R. Pot1, the putative telomere end–binding protein in fission yeast and humans. Science 292, 1171–1175 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Loayza, D. & De Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 423, 1013–1018 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. González-Pérez, A. & Lopez-Bigas, N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am. J. Hum. Genet. 88, 440–449 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tejera, A.M. et al. TPP1 is required for TERT recruitment, telomere elongation during nuclear reprogramming, and normal skin development in mice. Dev. Cell 18, 775–789 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martínez, P. et al. Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev. 23, 2060–2075 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sfeir, A., Kabir, S., van Overbeek, M., Celli, G.B. & de Lange, T. Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 327, 1657–1661 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lei, M., Podell, E.R. & Cech, T.R. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat. Struct. Mol. Biol. 11, 1223–1229 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Forbes, S.A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Kendellen, M.F., Barrientos, K.S. & Counter, C.M. POT1 association with TRF2 regulates telomere length. Mol. Cell Biol. 29, 5611–5619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, L. et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126, 49–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Hockemeyer, D., Sfeir, A.J., Shay, J.W., Wright, W.E. & de Lange, T. POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end. EMBO J. 24, 2667–2678 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hockemeyer, D., Daniels, J.P., Takai, H. & de Lange, T. Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell 126, 63–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Martínez, P. & Blasco, M.A. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat. Rev. Cancer 11, 161–176 (2011).

    Article  PubMed  Google Scholar 

  22. Roos, G. et al. Short telomeres are associated with genetic complexity, high-risk genomic aberrations, and short survival in chronic lymphocytic leukemia. Blood 111, 2246–2252 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Lin, T.T. et al. Telomere dysfunction and fusion during the progression of chronic lymphocytic leukemia: evidence for a telomere crisis. Blood 116, 1899–1907 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Stephens, P.J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barrientos, K.S. et al. Distinct functions of POT1 at telomeres. Mol. Cell Biol. 28, 5251–5264 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hudson, T.J. et al. International network of cancer genome projects. Nature 464, 993–998 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M. & Barton, G.J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baumann, P., Podell, E. & Cech, T.R. Human Pot1 (protection of telomeres) protein: cytolocalization, gene structure, and alternative splicing. Mol. Cell Biol. 22, 8079–8087 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blasco, M.A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Samper, E. et al. Normal telomere length and chromosomal end capping in poly(ADP-ribose) polymerase–deficient mice and primary cells despite increased chromosomal instability. J. Cell Biol. 154, 49–60 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Canela, A., Vera, E., Klatt, P. & Blasco, M.A. High-throughput telomere length quantification by FISH and its application to human population studies. Proc. Natl. Acad. Sci. USA 104, 5300–5305 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to D.A. Puente, S. Guijarro, S. Martín, C. Capdevila, M. Sánchez and L. Plá for excellent technical assistance and to N. Villahoz and C. Muro for excellent work in the coordination of the CLL Spanish Consortium. We thank T. de Lange (The Rockefeller University) for providing the POT1 plasmid. We are also very grateful to all individuals with CLL who have participated in this study. This work was funded by the Spanish Ministry of Economy and Competitiveness through the Instituto de Salud Carlos III (ISCIII) and the Red Temática de Investigación del Cáncer (RTICC) del ISCIII. C.L.-O. is an Investigator of the Botín Foundation. Research in the laboratory of M.A.B. is funded by the Spanish Ministry of Economy and Competitiveness Projects SAF2008-05384 and CSD2007-00017, the Madrid Regional Government Project S2010/BMD-2303 (ReCaRe), the European Union Seventh Framework Programme Project FHEALTH-2010-259749 (EuroBATS), The European Research Council (ERC) Project GA 232854 (TEL STEM CELL), the Körber European Science Award from the Körber Foundation, the Preclinical Research Award from Fundación Lilly (Spain), Fundación Botín (Spain) and the AXA Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

V.Q., A.J.R., A.K. and X.S.P. developed the bioinformatics algorithms and performed the analysis of sequence data. A.J.R., M.F., D.R., C.G. and M.G. performed functional studies. L.C., A.M.-T., N.V., M.L.-G. and A.L.-G. performed clinical analysis. A.J.R., V.Q., M.A.B., E.C. and C.L.-O. conceived and directed the research and wrote the manuscript, which all authors have approved.

Corresponding authors

Correspondence to María A Blasco, Elías Campo or Carlos López-Otín.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–6 and Supplementary Figures 1–4 (PDF 4171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramsay, A., Quesada, V., Foronda, M. et al. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat Genet 45, 526–530 (2013). https://doi.org/10.1038/ng.2584

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2584

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer