Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetics of gene expression in primary immune cells identifies cell type–specific master regulators and roles of HLA alleles

This article has been updated

Abstract

Trans-acting genetic variants have a substantial, albeit poorly characterized, role in the heritable determination of gene expression. Using paired purified primary monocytes and B cells, we identify new predominantly cell type–specific cis and trans expression quantitative trait loci (eQTLs), including multi-locus trans associations to LYZ and KLF4 in monocytes and B cells, respectively. Additionally, we observe a B cell–specific trans association of rs11171739 at 12q13.2, a known autoimmune disease locus, with IP6K2 (P = 5.8 × 10−15), PRIC285 (P = 3.0 × 10−10) and an upstream region of CDKN1A (P = 2 × 10−52), suggesting roles for cell cycle regulation and peroxisome proliferator-activated receptor γ (PPARγ) signaling in autoimmune pathogenesis. We also find that specific human leukocyte antigen (HLA) alleles form trans associations with the expression of AOAH and ARHGAP24 in monocytes but not in B cells. In summary, we show that mapping gene expression in defined primary cell populations identifies new cell type–specific trans-regulated networks and provides insights into the genetic basis of disease susceptibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shared and cell type–specific cis and trans associations in B cells and monocytes.
Figure 2: eSNPs shared between cell types may lead to opposing directional effects on gene expression or associate with expression of different genes in a cell type–specific manner.
Figure 3: rs10784774 marks a monocyte-specific cis eSNP to LYZ and constitutes a monocyte-specific master regulator of multiple genes, including CREB1.
Figure 4: rs11171739, a SNP at 12q13.2 with strong autoimmune association, is a B cell–specific trans eQTL to three genes.
Figure 5: Imputation of HLA status resolves cell type–specific trans-associated gene expression to the carriage of specific HLA alleles.
Figure 6: Cell type–specific cis eQTLs involve disease-associated SNP markers.

Similar content being viewed by others

Accession codes

Accessions

ArrayExpress

Change history

  • 11 April 2012

    In the version of this article initially published online, the legend to Figure 6 included an incorrect reference to celiac disease. The correct reference should be to Crohn's disease. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Cookson, W., Liang, L., Abecasis, G., Moffatt, M. & Lathrop, M. Mapping complex disease traits with global gene expression. Nat. Rev. Genet. 10, 184–194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gerrits, A. et al. Expression quantitative trait loci are highly sensitive to cellular differentiation state. PLoS Genet. 5, e1000692 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dimas, A.S. et al. Common regulatory variation impacts gene expression in a cell type–dependent manner. Science 325, 1246–1250 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nica, A.C. et al. The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. PLoS Genet. 7, e1002003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheung, V.G. et al. Mapping determinants of human gene expression by regional and genome-wide association. Nature 437, 1365–1369 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stranger, B.E. et al. Population genomics of human gene expression. Nat. Genet. 39, 1217–1224 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Schadt, E.E. et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 6, e107 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kwan, T. et al. Tissue effect on genetic control of transcript isoform variation. PLoS Genet. 5, e1000608 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zeller, T. et al. Genetics and beyond—the transcriptome of human monocytes and disease susceptibility. PLoS ONE 5, e10693 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Idaghdour, Y. et al. Geographical genomics of human leukocyte gene expression variation in southern Morocco. Nat. Genet. 42, 62–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Small, K.S. et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat. Genet. 43, 561–564 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lyons, P.A. et al. Microarray analysis of human leucocyte subsets: the advantages of positive selection and rapid purification. BMC Genomics 8, 64 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fehrmann, R.S. et al. Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet. 7, e1002197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dixon, A.L. et al. A genome-wide association study of global gene expression. Nat. Genet. 39, 1202–1207 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Van Laer, L. et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5. Nat. Genet. 20, 194–197 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Akino, K. et al. Identification of DFNA5 as a target of epigenetic inactivation in gastric cancer. Cancer Sci. 98, 88–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Schoggins, J.W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu, H., Manivannan, A., Crane, I., Dawson, R. & Liversidge, J. Critical but divergent roles for CD62L and CD44 in directing blood monocyte trafficking in vivo during inflammation. Blood 112, 1166–1174 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Landers, J.E. et al. Reduced expression of the Kinesin-Associated Protein 3 (KIFAP3) gene increases survival in sporadic amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 106, 9004–9009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Benson, V., Grobarova, V., Richter, J. & Fiserova, A. Glycosylation regulates NK cell–mediated effector function through PI3K pathway. Int. Immunol. 22, 167–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Wen, A.Y., Sakamoto, K.M. & Miller, L.S. The role of the transcription factor CREB in immune function. J. Immunol. 185, 6413–6419 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Fischer, U. et al. Cloning of a novel transcription factor–like gene amplified in human glioma including astrocytoma grade I. Hum. Mol. Genet. 6, 1817–1822 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Hakonarson, H. et al. A novel susceptibility locus for type 1 diabetes on Chr12q13 identified by a genome-wide association study. Diabetes 57, 1143–1146 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Nair, R.P. et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways. Nat. Genet. 41, 199–204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Todd, J.A. et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 39, 857–864 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  29. Plagnol, V., Smyth, D.J., Todd, J.A. & Clayton, D.G. Statistical independence of the colocalized association signals for type 1 diabetes and RPS26 gene expression on chromosome 12q13. Biostatistics 10, 327–334 (2009).

    Article  PubMed  Google Scholar 

  30. Koldobskiy, M.A. et al. p53-mediated apoptosis requires inositol hexakisphosphate kinase-2. Proc. Natl. Acad. Sci. USA 107, 20947–20951 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lawson, B.R. et al. Deficiency of the cyclin kinase inhibitor p21(WAF-1/CIP-1) promotes apoptosis of activated/memory T cells and inhibits spontaneous systemic autoimmunity. J. Exp. Med. 199, 547–557 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, K. et al. A regulatory SNP at position –899 in CDKN1A is associated with systemic lupus erythematosus and lupus nephritis. Genes Immun. 10, 482–486 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 40, 638–645 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tomaru, T. et al. Isolation and characterization of a transcriptional cofactor and its novel isoform that bind the deoxyribonucleic acid–binding domain of peroxisome proliferator–activated receptor-γ. Endocrinology 147, 377–388 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Hagen, F.S. et al. Expression and characterization of recombinant human acyloxyacyl hydrolase, a leukocyte enzyme that deacylates bacterial lipopolysaccharides. Biochemistry 30, 8415–8423 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Dilthey, A.T., Moutsianas, L., Leslie, S. & McVean, G. HLA*IMP—an integrated framework for imputing classical HLA alleles from SNP genotypes. Bioinformatics 27, 968–972 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leslie, S., Donnelly, P. & McVean, G. A statistical method for predicting classical HLA alleles from SNP data. Am. J. Hum. Genet. 82, 48–56 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lavelin, I. & Geiger, B. Characterization of a novel GTPase-activating protein associated with focal adhesions and the actin cytoskeleton. J. Biol. Chem. 280, 7178–7185 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Rioux, J.D. et al. Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proc. Natl. Acad. Sci. USA 106, 18680–18685 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mukai, R., Suzuki, M., Yabe, T., Hamaguchi, H. & Maeda, H. Identification of the MT3 molecule from HLA-DR4, 7, and w9 homozygous cell lines. J. Immunol. 133, 3211–3219 (1984).

    CAS  PubMed  Google Scholar 

  41. Hotfilder, M., Baxendale, S., Cross, M.A. & Sablitzky, F. Def-2, -3, -6 and -8, novel mouse genes differentially expressed in the haemopoietic system. Br. J. Haematol. 106, 335–344 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Vandiedonck, C. et al. Pervasive haplotypic variation in the spliceo-transcriptome of the human major histocompatibility complex. Genome Res. 21, 1042–1054 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fellay, J. et al. A whole-genome association study of major determinants for host control of HIV-1. Science 317, 944–947 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thomas, R. et al. HLA-C cell surface expression and control of HIV/AIDS correlate with a variant upstream of HLA-C. Nat. Genet. 41, 1290–1294 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Limou, S. et al. Genomewide association study of an AIDS-nonprogression cohort emphasizes the role played by HLA genes (ANRS Genomewide Association Study 02). J. Infect. Dis. 199, 419–426 (2009).

    Article  PubMed  Google Scholar 

  46. Liu, Y. et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 4, e1000041 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Strange, A. et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet. 42, 985–990 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ho, P.Y. et al. Investigating the role of the HLA-Cw*06 and HLA-DRB1 genes in susceptibility to psoriatic arthritis: comparison with psoriasis and undifferentiated inflammatory arthritis. Ann. Rheum. Dis. 67, 677–682 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Pereyra, F. et al. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 330, 1551–1557 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nica, A.C. et al. Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet. 6, e1000895 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Barrett, J.C. et al. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat. Genet. 41, 1330–1334 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Evans, D.M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Neznanov, N., Neznanova, L., Angres, B. & Gudkov, A.V. Serologically defined colon cancer antigen 3 is necessary for the presentation of TNF receptor 1 on cell surface. DNA Cell Biol. 24, 777–785 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Ruland, J. CARD9 signaling in the innate immune response. Ann. NY Acad. Sci. 1143, 35–44 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Andrés, A.M. et al. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. PLoS Genet. 6, e1001157 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Elstak, E.D. et al. The munc13–4-rab27 complex is specifically required for tethering secretory lysosomes at the plasma membrane. Blood 118, 1570–1578 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Gray, M., Miles, K., Salter, D., Gray, D. & Savill, J. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proc. Natl. Acad. Sci. USA 104, 14080–14085 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Knowles, R.W. et al. Complexity of the supertypic HLA-DRw53 specificity: two distinct epitopes differentially expressed on one or all of the DR β-chains depending on the HLA-DR allotype. J. Immunol. 137, 2618–2626 (1986).

    CAS  PubMed  Google Scholar 

  59. Ohta, Y., Hartwig, J.H. & Stossel, T.P. FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling. Nat. Cell Biol. 8, 803–814 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Stossel, T.P. et al. Filamins as integrators of cell mechanics and signalling. Nat. Rev. Mol. Cell Biol. 2, 138–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Tedder, T.F. & Isaacs, C.M. Isolation of cDNAs encoding the CD19 antigen of human and mouse B lymphocytes. A new member of the immunoglobulin superfamily. J. Immunol. 143, 712–717 (1989).

    CAS  PubMed  Google Scholar 

  62. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  63. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2009).

  67. Pruim, R.J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very grateful to all the volunteers who participated in this study, together with members of the Knight laboratory and A. Hill for their support. We thank A. Auton for his assistance in the identification of probes containing SNPs with European MAF of >0.01% using the 1000 Genomes Project data set and to J. Broxholme for bioinformatic support and mapping of all probes to the reference sequence. We thank G. Gibson, A. Hill and colleagues for critical reading of the manuscript and helpful suggestions. This work was supported by the Wellcome Trust (074318 to J.C.K., 088891 to B.P.F. and 075491/Z/04 to the core facilities at the Wellcome Trust Centre for Human Genetics), the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) (281824 to J.C.K.) and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

B.P.F. and J.C.K. conceived, designed and initiated the study. B.P.F., J.C.K., K.P. and S.M. established the volunteer cohort and sample collection. B.P.F., K.P., P.E. and S.M. performed the experimental work. B.P.F., J.C.K., J.R. and S.M. analyzed the data. C.L., F.O.V. and S.L. contributed reagents and expertise. A.D. and S.L. performed the HLA imputation. B.P.F. and J.C.K. wrote the paper, with contributions to manuscript editing from other authors. All authors read and approved the manuscript before submission.

Corresponding authors

Correspondence to Benjamin P Fairfax or Julian C Knight.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note and Supplementary Figures 1–15 (PDF 12223 kb)

Supplementary Table 1

Cis-eQTL listed by eSNP and cell type (XLS 43358 kb)

Supplementary Table 2

Trans-eQTL listed by eSNP and cell type (XLS 474 kb)

Supplementary Table 3

Summary of cis-eQTL at different significance thresholds (XLS 31 kb)

Supplementary Table 4

Directional eQTL (XLS 49 kb)

Supplementary Table 5

Correlation analysis of gene expression for genes involved in LYZ trans-eQTL (XLS 10363 kb)

Supplementary Table 6

Relationship between GWAS marker SNPs and observed eQTL in B cells and monocytes (XLS 2110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fairfax, B., Makino, S., Radhakrishnan, J. et al. Genetics of gene expression in primary immune cells identifies cell type–specific master regulators and roles of HLA alleles. Nat Genet 44, 502–510 (2012). https://doi.org/10.1038/ng.2205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2205

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research