Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells

Abstract

The planar cell polarity (PCP) signaling system governs many aspects of polarized cell behavior. Here, we use an in vivo model of vertebrate mucociliary epithelial development to show that Dishevelled (Dvl) is essential for the apical positioning of basal bodies. We find that Dvl and Inturned mediate the activation of the Rho GTPase specifically at basal bodies, and that these three proteins together mediate the docking of basal bodies to the apical plasma membrane. Moreover, we find that this docking involves a Dvl-dependent association of basal bodies with membrane-bound vesicles and the vesicle-trafficking protein, Sec8. Once docked, basal bodies again require Dvl and Rho for the planar polarization that underlies directional beating of cilia. These results demonstrate previously undescribed functions for PCP signaling components and suggest that a common signaling apparatus governs both apical docking and planar polarization of basal bodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dvl is essential for ciliogenesis in multi-ciliated cells.
Figure 2: Dvl is essential for normal cytoskeletal organization in multi-ciliated cells.
Figure 3: Dvl and Inturned are essential for the apical positioning of basal bodies.
Figure 4: Dvl localizes near the base of cilia in multi-ciliated cells.
Figure 5: Dvl and Inturned control the activation and localization of the Rho GTPase.
Figure 6: Dvl links basal body docking to vesicle traffic and Sec8 localization.
Figure 7: Dvl governs planar polarization of basal bodies.
Figure 8: Dvl and Rho govern directional fluid flow across the ciliated epidermis.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Chilvers, M.A. & O'Callaghan, C. Local mucociliary defence mechanisms. Paediatr. Respir. Rev. 1, 27–34 (2000).

    CAS  PubMed  Google Scholar 

  2. Hayes, J.M. et al. Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development. Dev. Biol. 312, 115–130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steinman, R.M. An electron microscopic study of ciliogenesis in developing epidermis and trachea in the embryo of Xenopus laevis. Am. J. Anat. 122, 19–55 (1968).

    Article  CAS  PubMed  Google Scholar 

  4. Raji, A.R. & Naserpour, M. Light and electron microscopic studies of the trachea in the one-humped camel (Camelus dromedarius). Anat. Histol. Embryol. 36, 10–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Dawe, H.R., Farr, H. & Gull, K. Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J. Cell Sci. 120, 7–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Scholey, J.M. & Anderson, K.V. Intraflagellar transport and cilium-based signaling. Cell 125, 439–442 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Park, T.J., Haigo, S.L. & Wallingford, J.B. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Nat. Genet. 38, 303–311 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Vladar, E.K. & Stearns, T. Molecular characterization of centriole assembly in ciliated epithelial cells. J. Cell Biol. 178, 31–42 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pan, J., You, Y., Huang, T. & Brody, S.L. RhoA-mediated apical actin enrichment is required for ciliogenesis and promoted by Foxj1. J. Cell Sci. 120, 1868–1876 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Huang, T. et al. Foxj1 is required for apical localization of ezrin in airway epithelial cells. J. Cell Sci. 116, 4935–4945 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Gomperts, B.N., Gong-Cooper, X. & Hackett, B.P. Foxj1 regulates basal body anchoring to the cytoskeleton of ciliated pulmonary epithelial cells. J. Cell Sci. 117, 1329–1337 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Boisvieux-Ulrich, E., Laine, M.C. & Sandoz, D. Cytochalasin D inhibits basal body migration and ciliary elongation in quail oviduct epithelium. Cell Tissue Res. 259, 443–454 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Sorokin, S.P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3, 207–230 (1968).

    CAS  PubMed  Google Scholar 

  14. Boisvieux-Ulrich, E., Laine, M.C. & Sandoz, D. The orientation of ciliary basal bodies in quail oviduct is related to the ciliary beating cycle commencement. Biol. Cell 55, 147–150 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Frisch, D. & Farbman, A.I. Development of order during ciliogenesis. Anat. Rec. 162, 221–232 (1968).

    Article  CAS  PubMed  Google Scholar 

  16. Mitchell, B., Jacobs, R., Li, J., Chien, S. & Kintner, C. A positive feedback mechanism governs the polarity and motion of motile cilia. Nature 447, 97–101 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Wallingford, J.B. Planar cell polarity, ciliogenesis and neural tube defects. Hum. Mol. Genet. 15 (Spec No. 2.), R227–R234 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Adler, P.N., Zhu, C. & Stone, D. Inturned localizes to the proximal side of wing cells under the instruction of upstream planar polarity proteins. Curr. Biol. 14, 2046–2051 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Wallingford, J.B. et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405, 81–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet. 37, 537–543 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ross, A.J. et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat. Genet. 37, 1135–1140 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Oishi, I., Kawakami, Y., Raya, A., Callol-Massot, C. & Izpisua Belmonte, J.C. Regulation of primary cilia formation and left-right patterning in zebrafish by a noncanonical Wnt signaling mediator, duboraya. Nat. Genet. 38, 1316–1322 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Assheton, R. Notes on the ciliation of the ectoderm of the amphibian embryo. Q. J. Microsc. Sci. 38, 465–484 (1896).

    Google Scholar 

  24. Nokhbatolfoghahai, M., Downie, J.R., Clelland, A.K. & Rennison, K. The surface ciliation of anuran amphibian embryos and early larvae: patterns, timing differences and functions. J. Nat. Hist. 39, 887–929 (2005).

    Article  Google Scholar 

  25. Toskala, E., Smiley-Jewell, S.M., Wong, V.J., King, D. & Plopper, C.G. Temporal and spatial distribution of ciliogenesis in the tracheobronchial airways of mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 289, L454–L459 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Konig, G. & Hausen, P. Planar polarity in the ciliated epidermis of Xenopus embryos. Dev. Biol. 160, 355–368 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Wallingford, J.B. & Habas, R. The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132, 4421–4436 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Axelrod, J.D., Miller, J.R., Shulman, J.M., Moon, R.T. & Perrimon, N. Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev. 12, 2610–2622 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rothbächer, U. et al. Dishevelled phosphorylation, subcellular localization and homomerization regulate its role in early embryogenesis. EMBO J. 19, 1010–1022 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Habas, R., Kato, Y. & He, X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107, 843–854 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Benink, H.A. & Bement, W.M. Concentric zones of active RhoA and Cdc42 around single cell wounds. J. Cell Biol. 168, 429–439 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Park, T.J., Gray, R.S., Sato, A., Habas, R. & Wallingford, J.B. Subcellular localization and signaling properties of dishevelled in developing vertebrate embryos. Curr. Biol. 15, 1039–1044 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Cohen, E., Binet, S. & Meininger, V. Ciliogenesis and centriole formation in the mouse embryonic nervous system. An ultrastructural analysis. Biol. Cell 62, 165–169 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Yu, A. et al. Association of Dishevelled with the clathrin AP-2 adaptor is required for Frizzled endocytosis and planar cell polarity signaling. Dev. Cell 12, 129–141 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bilic, J. et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316, 1619–1622 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Capelluto, D.G. et al. The DIX domain targets dishevelled to actin stress fibres and vesicular membranes. Nature 419, 726–729 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Lanzetti, L. Actin in membrane trafficking. Curr. Opin. Cell Biol. 19, 453–458 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Classen, A.K., Anderson, K.I., Marois, E. & Eaton, S. Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev. Cell 9, 805–817 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Kishida, S. et al. Dvl regulates endo- and exocytotic processes through binding to synaptotagmin. Genes Cells 12, 49–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Schwarz-Romond, T., Merrifield, C., Nichols, B.J. & Bienz, M. The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles. J. Cell Sci. 118, 5269–5277 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, W. et al. Dishevelled 2 recruits β-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 301, 1391–1394 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Ahmad-Annuar, A. et al. Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. J. Cell Biol. 174, 127–139 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gerdes, J.M. et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat. Genet. 39, 1350–1360 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, J.C. et al. The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat. Genet. 36, 462–470 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Nachury, M.V. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Jekely, G. & Arendt, D. Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. Bioessays 28, 191–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Panizzi, J.R., Jessen, J.R., Drummond, I.A. & Solnica-Krezel, L. New functions for a vertebrate Rho guanine nucleotide exchange factor in ciliated epithelia. Development 134, 921–931 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Kramer-Zucker, A.G. et al. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis. Development 132, 1907–1921 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Kibar, Z. et al. Mutations in VANGL1 associated with neural-tube defects. N. Engl. J. Med. 356, 1432–1437 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Sive, H.L., Grainger, R.M. & Harland, R.M. Early Development of Xenopus laevis: a Laboratory Manual (Cold Spring Harbor Press, Cold Spring Harbor, New York, 2000).

    Google Scholar 

Download references

Acknowledgements

We thank R. Gray, J. Hayes and E. Herrington for technical assistance, The Institute for Cellular and Molecular Biology at University of Texas, Austin Core Facility for help with electron microscopy and J. Kirk with Zeiss Microimaging for help with high-speed confocal imaging. We thank A. Ewald for critical reading and discussion. T.J.P. is supported by the William S. Livingston Graduate Fellowship from University of Texas, Austin. This work was supported by US National Institutes of Health/National Institute of General Medical Sciences grants to J.B.W. and C.K. and by grants to J.B.W. from The Sandler Program for Asthma Research, The Burroughs-Wellcome Fund and The March of Dimes.

Author information

Authors and Affiliations

Authors

Contributions

T.J.P., B.J.M., C.K. and J.B.W. designed the study; T.J.P., B.J.M. and P.B.A. carried out the experiments; all authors contributed to the interpretation of the results and the writing of the paper.

Corresponding author

Correspondence to John B Wallingford.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 15678 kb)

Supplementary Movie 1

Flow of beads across a control tadpole is highly organized. (MOV 2770 kb)

Supplementary Movie 2

Flow of beads across a Rho-N19 expressing tadpole is less organized. Swirling and turning of beads can be observed frequently. (MOV 3383 kb)

Supplementary Movie 3

Flow of beads across an Xdd1 expressing tadpole is less organized. Swirling and turning of beads can be observed frequently. (MOV 1500 kb)

Supplementary Movie 4

High-speed confocal time-lapse of beating cilia from an intact control embryo labelled with tau-GFP. (MOV 2483 kb)

Supplementary Movie 5

High-speed confocal time-lapse of beating cilia from an intact embryo labelled with tau-GFP and expressing Xdd1. Beat frequency is similar, but beating appears disorganized. (MOV 1784 kb)

Supplementary Movie 6

High-speed confocal time-lapse of multiple ciliated cells from a control embryo. (MOV 2545 kb)

Supplementary Movie 7

High-speed confocal time-lapse of multiple ciliated cells from an Xdd1 expressing embryo. Overall beat frequency is similar to control, but appears modestly reduced in cells on the left. Cells on the right appear to have a disorganized beating pattern. (MOV 1918 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, T., Mitchell, B., Abitua, P. et al. Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat Genet 40, 871–879 (2008). https://doi.org/10.1038/ng.104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing