Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A chromatin-modifying function of JNK during stem cell differentiation

Abstract

Signaling mediates cellular responses to extracellular stimuli. The c-Jun NH2-terminal kinase (JNK) pathway exemplifies one subgroup of the mitogen-activated protein (MAP) kinases, which, besides having established functions in stress response, also contribute to development by an unknown mechanism1,2,3,4. We show by genome-wide location analysis that JNK binds to a large set of active promoters during the differentiation of stem cells into neurons. JNK-bound promoters are enriched with binding motifs for the transcription factor NF-Y but not for AP-1. NF-Y occupies these predicted sites, and overexpression of dominant-negative NF-YA reduces the JNK presence on chromatin. We find that histone H3 Ser10 (H3S10) is a substrate for JNK, and JNK-bound promoters are enriched for H3S10 phosphorylation. Inhibition of JNK signaling in post-mitotic neurons reduces phosphorylation at H3S10 and the expression of target genes. These results establish MAP kinase binding and function on chromatin at a novel class of target genes during stem cell differentiation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: JNK is upregulated during stem cell differentiation and directly binds promoters.
Figure 2: JNK target promoters are active and show increased JNK binding during terminal differentiation.
Figure 3: NF-Y mediates JNK recruitment to chromatin.
Figure 4: Inhibition of JNK signaling blocks differentiation and reduces H3S10 phosphorylation.
Figure 5: Blocking JNK kinase activity downregulates target gene expression.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Wagner, E.F. & Nebreda, A.R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer 9, 537–549 (2009).

    Article  CAS  Google Scholar 

  2. Karin, M. & Gallagher, E. From JNK to pay dirt: jun kinases, their biochemistry, physiology and clinical importance. IUBMB Life 57, 283–295 (2005).

    Article  CAS  Google Scholar 

  3. Weston, C.R. & Davis, R.J. The JNK signal transduction pathway. Curr. Opin. Cell Biol. 19, 142–149 (2007).

    Article  CAS  Google Scholar 

  4. Bogoyevitch, M.A. & Kobe, B. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol. Mol. Biol. Rev. 70, 1061–1095 (2006).

    Article  CAS  Google Scholar 

  5. Pearson, G. et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153–183 (2001).

    CAS  PubMed  Google Scholar 

  6. Gehani, S.S. et al. Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol. Cell 39, 886–900 (2010).

    Article  CAS  Google Scholar 

  7. Lawrence, M.C. et al. The roles of MAPKs in disease. Cell Res. 18, 436–442 (2008).

    Article  CAS  Google Scholar 

  8. Pokholok, D.K., Zeitlinger, J., Hannett, N.M., Reynolds, D.B. & Young, R.A. Activated signal transduction kinases frequently occupy target genes. Science 313, 533–536 (2006).

    Article  CAS  Google Scholar 

  9. Hu, S. et al. Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell 139, 610–622 (2009).

    Article  CAS  Google Scholar 

  10. Bungard, D. et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329, 1201–1205 (2010).

    Article  CAS  Google Scholar 

  11. Simone, C. et al. p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nat. Genet. 36, 738–743 (2004).

    Article  CAS  Google Scholar 

  12. Binétruy, B., Heasley, L., Bost, F., Caron, L. & Aouadi, M. Concise review: regulation of embryonic stem cell lineage commitment by mitogen-activated protein kinases. Stem Cells 25, 1090–1095 (2007).

    Article  Google Scholar 

  13. Amura, C.R., Marek, L., Winn, R.A. & Heasley, L.E. Inhibited neurogenesis in JNK1-deficient embryonic stem cells. Mol. Cell. Biol. 25, 10791–10802 (2005).

    Article  CAS  Google Scholar 

  14. Xu, P. et al. In vitro development of mouse embryonic stem cells lacking JNK/stress-activated protein kinase–associated protein 1 (JSAP1) scaffold protein revealed its requirement during early embryonic neurogenesis. J. Biol. Chem. 278, 48422–48433 (2003).

    Article  CAS  Google Scholar 

  15. Plachta, N., Bibel, M., Tucker, K.L. & Barde, Y.A. Developmental potential of defined neural progenitors derived from mouse embryonic stem cells. Development 131, 5449–5456 (2004).

    Article  CAS  Google Scholar 

  16. Bibel, M., Richter, J., Lacroix, E. & Barde, Y.A. Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nat. Protoc. 2, 1034–1043 (2007).

    Article  CAS  Google Scholar 

  17. Bibel, M. et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat. Neurosci. 7, 1003–1009 (2004).

    Article  CAS  Google Scholar 

  18. Raman, M., Chen, W. & Cobb, M.H. Differential regulation and properties of MAPKs. Oncogene 26, 3100–3112 (2007).

    Article  CAS  Google Scholar 

  19. Aplin, A.E., Hogan, B.P., Tomeu, J. & Juliano, R.L. Cell adhesion differentially regulates the nucleocytoplasmic distribution of active MAP kinases. J. Cell Sci. 115, 2781–2790 (2002).

    CAS  PubMed  Google Scholar 

  20. Weston, C.R. & Davis, R.J. The JNK signal transduction pathway. Curr. Opin. Genet. Dev. 12, 14–21 (2002).

    Article  CAS  Google Scholar 

  21. Bailey, T.L., Williams, N., Misleh, C. & Li, W.W. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 34, W369–W373 (2006).

    Article  CAS  Google Scholar 

  22. Shaulian, E. AP-1—the Jun proteins: oncogenes or tumor suppressors in disguise? Cell. Signal. 22, 894–899 (2010).

    Article  CAS  Google Scholar 

  23. Dolfini, D., Zambelli, F., Pavesi, G. & Mantovani, R. A perspective of promoter architecture from the CCAAT box. Cell Cycle 8, 4127–4137 (2009).

    Article  CAS  Google Scholar 

  24. Mantovani, R. et al. Dominant-negative analogs of NF-YA. J. Biol. Chem. 269, 20340–20346 (1994).

    CAS  PubMed  Google Scholar 

  25. Bennett, B.L. et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA 98, 13681–13686 (2001).

    Article  CAS  Google Scholar 

  26. Baek, S.H. When signaling kinases meet histones and histone modifiers in the nucleus. Mol. Cell 42, 274–284 (2011).

    Article  CAS  Google Scholar 

  27. Yoshioka, Y., Suyari, O. & Yamaguchi, M. Transcription factor NF-Y is involved in regulation of the JNK pathway during Drosophila thorax development. Genes Cells 13, 117–130 (2008).

    Article  CAS  Google Scholar 

  28. Wood, J.L. & Russo, A.F. Autoregulation of cell-specific MAP kinase control of the tryptophan hydroxylase promoter. J. Biol. Chem. 276, 21262–21271 (2001).

    Article  CAS  Google Scholar 

  29. Alabert, C. et al. Cell type-dependent control of NF-Y activity by TGF-β. Oncogene 25, 3387–3396 (2006).

    Article  CAS  Google Scholar 

  30. Lecona, E. et al. Upregulation of annexin A1 expression by butyrate in human colon adenocarcinoma cells: role of p53, NF-Y, and p38 mitogen-activated protein kinase. Mol. Cell. Biol. 28, 4665–4674 (2008).

    Article  CAS  Google Scholar 

  31. Rosso, S.B., Sussman, D., Wynshaw-Boris, A. & Salinas, P.C. Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat. Neurosci. 8, 34–42 (2005).

    Article  CAS  Google Scholar 

  32. Oliva, A.A. Jr. Atkins, C.M., Copenagle, L. & Banker, G.A. Activated c-Jun N-terminal kinase is required for axon formation. J. Neurosci. 26, 9462–9470 (2006).

    Article  CAS  Google Scholar 

  33. Dawson, M.A. et al. JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin. Nature 461, 819–822 (2009).

    Article  CAS  Google Scholar 

  34. Edmunds, J.W. & Mahadevan, L.C. MAP kinases as structural adaptors and enzymatic activators in transcription complexes. J. Cell Sci. 117, 3715–3723 (2004).

    Article  CAS  Google Scholar 

  35. Zhang, W. et al. The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifications and heterochromatic spreading in Drosophila. Development 133, 229–235 (2006).

    Article  CAS  Google Scholar 

  36. Prigent, C. & Dimitrov, S. Phosphorylation of serine 10 in histone H3, what for? J. Cell Sci. 116, 3677–3685 (2003).

    Article  CAS  Google Scholar 

  37. Nowak, S.J. & Corces, V.G. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 20, 214–220 (2004).

    Article  CAS  Google Scholar 

  38. Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    Article  CAS  Google Scholar 

  39. Anest, V. et al. A nucleosomal function for IκB kinase-α in NF-κB–dependent gene expression. Nature 423, 659–663 (2003).

    Article  CAS  Google Scholar 

  40. Cerutti, H. & Casas-Mollano, J.A. Histone H3 phosphorylation: universal code or lineage specific dialects? Epigenetics 4, 71–75 (2009).

    Article  CAS  Google Scholar 

  41. Dyson, M.H. et al. MAP kinase–mediated phosphorylation of distinct pools of histone H3 at S10 or S28 via mitogen- and stress-activated kinase 1/2. J. Cell Sci. 118, 2247–2259 (2005).

    Article  CAS  Google Scholar 

  42. Pérez-Cadahía, B., Drobic, B. & Davie, J.R. H3 phosphorylation: dual role in mitosis and interphase. Biochem. Cell Biol. 87, 695–709 (2009).

    Article  Google Scholar 

  43. Sassone-Corsi, P. et al. Requirement of Rsk-2 for epidermal growth factor–activated phosphorylation of histone H3. Science 285, 886–891 (1999).

    Article  CAS  Google Scholar 

  44. Yamamoto, Y., Verma, U.N., Prajapati, S., Kwak, Y.T. & Gaynor, R.B. Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature 423, 655–659 (2003).

    Article  CAS  Google Scholar 

  45. Zippo, A., De Robertis, A., Serafini, R. & Oliviero, S. PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat. Cell Biol. 9, 932–944 (2007).

    Article  CAS  Google Scholar 

  46. Mohn, F. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755–766 (2008).

    Article  CAS  Google Scholar 

  47. Glatter, T., Wepf, A., Aebersold, R. & Gstaiger, M. An integrated workflow for charting the human interaction proteome: insights into the PP2A system. Mol. Syst. Biol. 5, 237 (2009).

    Article  Google Scholar 

  48. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  49. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  Google Scholar 

  50. Bailey, T.L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  PubMed  Google Scholar 

  51. Bryne, J.C. et al. JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res. 36, D102–D106 (2008).

    Article  CAS  Google Scholar 

  52. Bailey, T.L. & Gribskov, M. Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14, 48–54 (1998).

    Article  CAS  Google Scholar 

  53. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  Google Scholar 

  54. Carvalho, B.S. & Irizarry, R.A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Hoerner, M. Seimiya and I. Nissen for technical assistance, N. Tiwari for help with reagents and critical suggestions, G. Christofori, M. Bentires-Alj and members of the Schübeler laboratory for comments to the manuscript, R. Davis (University of Massachusetts Medical School, Worcester, Massachusetts, USA) for providing wild-type NIH3T3 cells and those lacking JNK1 and JNK2, and R. Mantovani (University of Milan, Milan, Italy) for the wild-type and dominant-negative NF-Y constructs. We thank the facilities at the Friedrich Miescher Institute, especially T. Roloff. Illumina sequencing was carried out at the Quantitative Genomics Facility of the Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich. V.K.T. is supported by a Marie Curie International Incoming fellowship and an EMBO long-term postdoctoral fellowship. Research in the laboratory of R.P. is supported by the Deutsche Forschungsgemeinschaft (DFG), the European Union Epigenome Network of Excellence (EU-NoE) Epigenesys, Novartis and the ETH Zürich. Research in the laboratory of D.S. is supported by the Novartis Research Foundation, the European Union ((EU-NoE) Epigenesys, Blueprint)), the European Research Council (ERC-204264) and SystemsX.ch (Cell Plasticity).

Author information

Authors and Affiliations

Authors

Contributions

V.K.T. initiated and designed the study, performed experiments, analyzed data and wrote the manuscript. M.B.S. designed and performed the computational analysis and wrote the manuscript. C.W. performed experiments and analyzed data. R.P. provided input during the study and comments on the manuscript. C.B. initiated the study, performed experiments, analyzed data and wrote the manuscript. D.S. designed the study, analyzed data and wrote the manuscript.

Corresponding authors

Correspondence to Michael B Stadler or Dirk Schübeler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10. (PDF 6847 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, V., Stadler, M., Wirbelauer, C. et al. A chromatin-modifying function of JNK during stem cell differentiation. Nat Genet 44, 94–100 (2012). https://doi.org/10.1038/ng.1036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1036

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing