Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug Insight: role of the androgen receptor in the development and progression of prostate cancer

Abstract

Functional androgen receptor (AR) signaling is necessary for the development of prostate cancer. The therapeutic effect of androgen deprivation therapy for prostate cancer was described over 60 years ago and this treatment remains the mainstay of systemic therapy despite its transient response duration. It has become clear that AR expression and signaling remains intact as the disease evolves from androgen-sensitive cancer to classically (but perhaps inaccurately) termed hormone refractory prostate cancer. Through several genetic and epigenetic adaptations, prostate tumors continue to rely on AR growth signaling and they thus remain targets of 'hormonal' therapy. The development of new strategies and drugs that can abrogate AR signaling will probably result in important clinical benefits. The biology of androgen independence and the development of new approaches targeting AR signaling are reviewed herein.

Key Points

  • More-effective 'hormone therapy' is needed for prostate cancer

  • Despite the development of classically termed 'hormone refractory' prostate cancer, androgen receptor signaling remains an active growth-promoting pathway

  • The androgen receptor remains an important therapeutic target in hormone refractory prostate cancer

  • As prostate tumors develop in castrated men, AR signaling is maintained through AR amplification and mutation and the 'intracrine' production of androgen

  • Novel approaches to androgen receptor inhibition are in development and include more-potent antiandrogens, lyase inhibitors, 5α-reductase inhibitors, HSP90 inhibitors, and HDAC inhibitors

  • More-effective 'hormone therapy' might be achieved through combined inhibition of classic androgen receptor signaling and other interrelated pathways such as mTOR, EGFR or MAPK

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Androgen receptor structure and function

Similar content being viewed by others

References

  1. Caskey C et al. (1992) Triplet repeat mutations in human disease. Science 256: 784–789

    Article  CAS  PubMed  Google Scholar 

  2. Griffin J (1992) Androgen resistance—the clinical and molecular spectrum. N Engl J Med 326: 611–618

    Article  CAS  PubMed  Google Scholar 

  3. Huggins C and Hodges C (1941) The effect of castration, of oestrogen and of androgen injections on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1: 293–297

    CAS  Google Scholar 

  4. Evans R (1988) The steroid and thyroid hormone receptor super family. Science 240: 889–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pratt W and Toft D (1997) Steroid receptor interactions with heat shock protein and immunophilin charperones. Endocr Rev 18: 306–360

    CAS  PubMed  Google Scholar 

  6. Veldscholte J et al. (1992) Hormone-induced dissociation of the androgen receptor-heat shock protein complex: use of a new monoclonal antibody to distinguish transformed from nontransformed receptors. Biochemistry 31: 7422–7430

    Article  CAS  PubMed  Google Scholar 

  7. Dehm SM and Tindall DJ (2005) Regulation of androgen receptor signaling in prostate cancer. Expert Rev Anticancer Ther 5: 63–74

    Article  CAS  PubMed  Google Scholar 

  8. Shang Y et al. (2002) Formation of the androgen receptor transcription complex. Mol Cell 9: 601–610

    Article  CAS  PubMed  Google Scholar 

  9. Chang CY and McDonnell DP (2005) Androgen receptor-cofactor interactions as targets for new drug discovery. Trends Pharmacol Sci 26: 225–228

    Article  CAS  PubMed  Google Scholar 

  10. Mckenna J et al. (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20: 321–344

    CAS  PubMed  Google Scholar 

  11. Velasco A et al. (2004) Identification and validation of novel androgen-regulated genes in prostate cancer. Endocrinology 145: 3913–3924

    Article  CAS  PubMed  Google Scholar 

  12. Heinein C and Chang C (2002) The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol 16: 2181–2187

    Article  CAS  Google Scholar 

  13. Ruizeveld de Winter JA et al. (1991) Androgen receptor expression in human tissues: an immunohistochemical study. J Histochem Cytochem 39: 927–936

    Article  CAS  PubMed  Google Scholar 

  14. de Vere White R et al. (1997) Human androgen receptor expression in prostate cancer following androgen ablation. Eur Urol 31: 1–6

    Article  CAS  PubMed  Google Scholar 

  15. Sasaki M et al. (2002) Methylation and inactivation of estrogen, progesterone, and androgen receptors in prostate cancer. J Natl Cancer Inst 94: 384–390

    Article  CAS  PubMed  Google Scholar 

  16. Giovannucci E et al. (1997) The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 94: 3320–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Irvine R et al. (1995) The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res 55: 1937–1940

    CAS  PubMed  Google Scholar 

  18. Taplin ME and Balk SP (2004) Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. J Cell Biochem 91: 483–490

    Article  CAS  PubMed  Google Scholar 

  19. Chamberlain N et al. (1994) The length and location of the CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res 22: 3181–3186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Choong C et al. (1996) Reduced androgen receptor gene expression with first exon CAG repeat expansion. Mol Endocrinol 10: 1527–1535

    CAS  PubMed  Google Scholar 

  21. Eisenberger M et al. (1998) Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N Engl J Med 339: 1036–1042

    Article  CAS  PubMed  Google Scholar 

  22. Moul JW et al. (2004) Early versus delayed hormonal therapy for prostate specific antigen only recurrence of prostate cancer after radical prostatectomy. J Urol 171: 1141–1147

    Article  PubMed  Google Scholar 

  23. Bubendorf L et al. (1999) Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res 59: 803–806

    CAS  PubMed  Google Scholar 

  24. Edwards J et al. (2003) Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br J Cancer 89: 552–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ford OH et al. (2003) Androgen receptor gene amplification and protein expression in recurrent prostate cancer. J Urol 170: 1817–1821

    Article  CAS  PubMed  Google Scholar 

  26. Koivisto P et al. (1997) Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 57: 314–319

    CAS  PubMed  Google Scholar 

  27. Linja M et al. (2001) Amplification and over expression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 61: 3550–3555

    CAS  PubMed  Google Scholar 

  28. Visakorpi T et al. (1995) In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9: 401–406

    Article  CAS  PubMed  Google Scholar 

  29. Palmberg C et al. (2000) Androgen receptor gene amplificaiton at primary progression predicts response to combined androgen blockade as second line therapy for advanced prostate cancer. J Urol 164: 1992–1995

    Article  CAS  PubMed  Google Scholar 

  30. Veldscholte J et al. (1990) A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun 173: 534–540

    Article  CAS  PubMed  Google Scholar 

  31. Gottlieb B et al. (2004) The androgen receptor gene mutations database (ARDB): 2004 update. Hum Mutat 23: 527–533

    Article  CAS  PubMed  Google Scholar 

  32. Gelmann E (2002) Molecular biology of the androgen receptor. J Clin Oncol 20: 3001–3015

    Article  CAS  PubMed  Google Scholar 

  33. Taplin ME et al. (1999) Selection for androgen receptor mutations in prostate cancer treated with androgen antagonist. Cancer Res 59: 2511–2515

    CAS  PubMed  Google Scholar 

  34. Fenton M et al. (1997) Functional characterization of mutant androgen receptors from androgen independent prostate cancer. Clin Cancer Res 3: 1383–1388

    CAS  PubMed  Google Scholar 

  35. Joyce R et al. (1998) High dose bicalutamide for androgen independent prostate cancer: Effect of prior hormonal therapy. J Urol 159: 149–153

    Article  CAS  PubMed  Google Scholar 

  36. Taplin ME et al. (2003) Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia group B study 9663. J Clin Oncol 21: 2673–2678

    Article  CAS  PubMed  Google Scholar 

  37. Culig Z et al. (1993) Mutant androgen receptor detected in an advanced-stage prostate carcinoma is activated by adrenal androgen and progesterone. Mol Endocrinol 7: 1541–1550

    CAS  PubMed  Google Scholar 

  38. Culig Z et al. (1996) Activation of two mutant androgen receptors from human prostatic carcinoma by adrenal androgens and metabolic derivatives of testosterone. Cancer Detect Prev 20: 68–75

    CAS  PubMed  Google Scholar 

  39. Zhao X et al. (2000) Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med 6: 703–706

    Article  CAS  PubMed  Google Scholar 

  40. Buchanan G et al. (2001) Mutations at the boundary of the hinge and ligand binding domain of the androgen receptor confer increased transactivation function. Mol Endocrinol 15: 46–56

    Article  CAS  PubMed  Google Scholar 

  41. Ceraline J et al. (2004) Constitutive activation of the androgen receptor by a point mutation in the hinge region: a new mechanism for androgen-independent growth in prostate cancer. Int J Cancer 108: 152–157

    Article  CAS  PubMed  Google Scholar 

  42. Gregory C et al. (2001) A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res 61: 4315–4319

    CAS  PubMed  Google Scholar 

  43. Halkidou K et al. (2003) Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene 22: 2466–2477

    Article  CAS  PubMed  Google Scholar 

  44. Papaioannou M et al. (2005) Co-activator and co-repressor interplay on the human androgen receptor. Andrologia 37: 211–213

    Article  CAS  PubMed  Google Scholar 

  45. Ueda T et al. (2002) Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem 277: 7076–7085

    Article  CAS  PubMed  Google Scholar 

  46. Grossmann M et al. (2001) Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst 93: 1687–1697

    Article  CAS  PubMed  Google Scholar 

  47. Ford C et al. (1998) Molecular basis for interactions of G proteins betagamma subunits with effectors. Science 280: 1271–1274

    Article  CAS  PubMed  Google Scholar 

  48. Kasbohm E et al. (2005) Androgen receptor activation by Gs signaling in prostate cancer cells. J Biol Chem 280: 11583–11589

    Article  CAS  PubMed  Google Scholar 

  49. Waxman J et al. (1983) Treatment with gonadotropin-releasing hormone analogue in advanced prostatic cancer. BMJ 286: 1309–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Labrie F et al. (2005) Is dehydroepiandrosterone a hormone? J Endocrinol 187: 169–196

    Article  CAS  PubMed  Google Scholar 

  51. Mohler J et al. (2004) The androgen axis in recurrent prostate cancer. Clin Cancer Res 10: 440–448

    Article  CAS  PubMed  Google Scholar 

  52. Scher H and Sawyers C (2005) Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 23: 8253–8261

    Article  CAS  PubMed  Google Scholar 

  53. Stanbrough M et al. (2006) Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 66: 2815–2825

    Article  CAS  PubMed  Google Scholar 

  54. Small EJ and Vogelzang NJ (1997) Second-line hormonal therapy for advanced prostate cancer: a shifting paradigm. J Clin Oncol 15: 382–388

    Article  CAS  PubMed  Google Scholar 

  55. Small EJ et al. (2004) Antiandrogen withdrawal alone or in combination with ketoconazole in androgen-independent prostate cancer patients: a phase III trial (CALGB 9583). J Clin Oncol 22: 1025–1033

    Article  CAS  PubMed  Google Scholar 

  56. Bhanalaph T et al. (1974) Current status of bilateral adrenalectomy on advanced prostate carcinoma. Ann Surg 179: 17–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Attard G et al. (2005) Selective blockade of androgenic steroid synthesis by novel lyase inhibitors as a therapeutic strategy for treating metastatic prostate cancer. BJU Int 96: 1241–1246

    Article  PubMed  Google Scholar 

  58. Miller W et al. (1997) The regulation of 17, 20 lyase activity. Steroids 62: 133–142

    Article  CAS  PubMed  Google Scholar 

  59. O'Donnell A et al. (2004) Hormonal impact of the 17alpha-hydroxylase/C(17,20)-lyase inhibitor abiraterone acetate (CB7630) in patients with prostate cancer. Br J Cancer 90: 2317–2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thompson I et al. (2003) The influence of finasteride on the development of prostate cancer. N Engl J Med 349: 215–224

    Article  CAS  PubMed  Google Scholar 

  61. Andriole G et al. (2004) Effect of the dual 5α-reductase inhibitor dutasteride on markers of tumor regression in prostate cancer. J Urol 172: 915–919

    Article  CAS  PubMed  Google Scholar 

  62. Eisenberger M et al. (2004) Phase I and clinical pharmacology of a type I and II, 5-alpha-reductase inhibitor (LY320236) in prostate cancer: elevation of estradiol as possible mechanism of action. Urology 63: 114–119

    Article  PubMed  Google Scholar 

  63. Brown T (2004) Nonsteroidal selective androgen receptor modulators (SARMs): designer androgen with flexible structures provide clinical promise. Endocrinology 145: 5420–5428

    Article  CAS  Google Scholar 

  64. [No authors listed] (2000) Maximum androgen blockade in advanced prostate cancer: an overview of the randomized trials. Lancet 355: 1491–1498

  65. Samson D et al. (2002) Systemic review and meta-analysis of monotherapy compared with combined androgen blockade for patients with advanced prostate carcinoma. Cancer 95: 361–376

    Article  CAS  PubMed  Google Scholar 

  66. Furr B (1995) Casodex: preclinical studies and controversies. Ann NY Acad Sci 761: 79–96

    Article  CAS  PubMed  Google Scholar 

  67. Bohl C et al. (2005) Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc Natl Acad Sci USA 102: 6201–6206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Salvati M et al. (2005) Identification of a novel class of androgen receptor antagonists based on the bicyclic-1H-isoindole-1,3(2H)-dione nucleus. Bioorg Med Chem Lett 15: 389–393

    Article  CAS  PubMed  Google Scholar 

  69. Hodgson M et al. (2005) The androgen receptor recruits nuclear receptor corepressor (N-CoR) in the presence of mifepristone via its N and C termini revealing a novel molecular mechanism for androgen receptor antagonists. J Biol Chem 280: 6511–6519

    Article  CAS  PubMed  Google Scholar 

  70. Hayes J et al. (2006) Efficacy of mifepristone (RU-486) in androgen independent prostate cancer [abstract #235]. Presented at the 2006 Prostate Cancer Symposium: 2006 February 24–26; San Francisco, CA

  71. Chang C et al. (2005) Development of peptide antagonists for the androgen receptor using combinatorial peptide phage display. Mol Endocrinol 19: 2478–2490

    Article  CAS  PubMed  Google Scholar 

  72. Banerji U et al. (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-Allylmino, 17-demethoxygeldannmycin in patients with advanced malignancies. J Clin Oncol 23: 4152–4161

    Article  CAS  PubMed  Google Scholar 

  73. Solit D et al. (2003) Hsp90 as a therapeutic target in prostate cancer. Semin Oncol 30: 709–716

    Article  CAS  PubMed  Google Scholar 

  74. Goetz MP et al. (2005) Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol 23: 1078–1087

    Article  CAS  PubMed  Google Scholar 

  75. Grem J et al. (2005) Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J Clin Oncol 23: 1885–1893

    Article  CAS  PubMed  Google Scholar 

  76. Yu X et al. (2005) Hsp90 inhibitors identified from a library of novobiocin analogues. J Am Chem Soc 127: 1278–1282

    Article  CAS  Google Scholar 

  77. Minucci S and Pelicci G (2006) Histone decacetylase inhibitiors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6: 38–51

    Article  CAS  PubMed  Google Scholar 

  78. Carducci M et al. (2001) A phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clin Cancer Res 7: 3047–3055

    CAS  PubMed  Google Scholar 

  79. Kelly W et al. (2003) Phase I clinical trial of histone deactylase inhibitor: suberylanilide hydroxamic acid (SAHA). Clin Cancer Res 9: 3578–3588

    CAS  PubMed  Google Scholar 

  80. Morris M et al. (2002) HER-2 profiling and targeting in prostate carcinoma. Cancer 94: 980–986

    Article  CAS  PubMed  Google Scholar 

  81. Solit D et al. (2004) Phase I pharmacokinetic and pharmacodynamic trial of docetaxel and 17AAG (17-allylamino-17-demethoxygeladanamycin) [abstract #3032]. J Clin Oncol 22

  82. Marquis J et al. (2005) disruption of gene expression and induction of apoptosis in prostate cancer cells by a DNA-damaging agent tethered to an androgen receptor ligand. Chem Biol 12: 779–787

    Article  CAS  PubMed  Google Scholar 

  83. Haag P et al. (2005) Androgen receptor down regulation by small interference RNA induces cell growth inhibition in androgen sensitive as well as in androgen independent prostate cancer cells. J Steroid Biochem Mol Biol 96: 251–258

    Article  CAS  PubMed  Google Scholar 

  84. Papatsoris A et al. (2005) Novel biological agents for the treatment of hormone refractory prostate cancer (HRPC). Curr Med Chem 12: 277–296

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taplin, ME. Drug Insight: role of the androgen receptor in the development and progression of prostate cancer. Nat Rev Clin Oncol 4, 236–244 (2007). https://doi.org/10.1038/ncponc0765

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing