Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic intervention based on protein prenylation and associated modifications

Abstract

In eukaryotic cells, a specific set of proteins are modified by C-terminal attachment of 15-carbon farnesyl groups or 20-carbon geranylgeranyl groups that function both as anchors for fixing proteins to membranes and as molecular handles for facilitating binding of these lipidated proteins to other proteins. Additional modification of these prenylated proteins includes C-terminal proteolysis and methylation, and attachment of a 16-carbon palmitoyl group; these modifications augment membrane anchoring and alter the dynamics of movement of proteins between different cellular membrane compartments. The enzymes in the protein prenylation pathway have been isolated and characterized. Blocking protein prenylation is proving to be therapeutically useful for the treatment of certain cancers, infection by protozoan parasites and the rare genetic disease Hutchinson-Gilford progeria syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of the C termini of prenylated proteins.
Figure 2: Enzymatic pathway for the modification of prenylated proteins.
Figure 3: Model for the trafficking of H-Ras and N-Ras from the Golgi complex to the plasma membrane and back67,68.
Figure 4: Model for extraction of prenylated Rab proteins from membranes via GDI, as previously formulated87.
Figure 5: Schematic representation of methods used to introduce natural and modified lipidated C termini on Ras GTPases, and a collection of semisynthetic neo-Ras proteins synthesized via these methods58,62,64,67,76.
Figure 6: FTI and GGTI compounds.

Similar content being viewed by others

References

  1. Sakagami, Y. et al. Isolation of a novel sex hormone tremerogen A-10, controlling conjugation tube formation in Tremella mesenterica fries. Agric. Biol. Chem. 42, 1093–1094 (1978).

    CAS  Google Scholar 

  2. Tsuchiya, E., Fukui, S., Kamiya, Y., Sakagami, Y. & Fujino, M. Requirements of chemical structure for hormonal activity of lipo-peptidyl factors inducing sexual differentiation in vegetative cells of heterobasidiomycetous yeasts. Biochem. Biophys. Res. Commun. 85, 459–463 (1978).

    Article  CAS  PubMed  Google Scholar 

  3. Anderegg, R.J., Betz, R., Carr, S.A., Crabb, J.W. & Duntze, W. Structure of Saccharomyces cerevisiae mating hormone a-factor. Identification of S-farnesyl cysteine as a structural component. J. Biol. Chem. 263, 18236–18240 (1988).

    CAS  PubMed  Google Scholar 

  4. Glomset, J.A., Gelb, M.H. & Farnsworth, C.C. Prenyl proteins in eukaryotic cells: a new type of membrane anchor. Trends Biochem. Sci. 15, 139–142 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Farnsworth, C.C., Wolda, S.L., Gelb, M.H. & Glomset, J.A. Human lamin B contains a farnesylated cysteine residue. J. Biol. Chem. 264, 20422–20429 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Farnsworth, C.C., Gelb, M.H. & Glomset, J.A. Identification of geranylgeranyl-modified proteins in HeLa cells. Science 247, 320–322 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Farnsworth, C.C., Seabra, M.C., Ericsson, L.H., Gelb, M.H. & Glomset, J.A. Rab geranylgeranyl transferase catalyzes the geranylgeranylation of adjacent cysteines in the small GTPases, Rab1A, Rab3A, and Rab5A. Proc. Natl. Acad. Sci. USA 91, 11963–11967 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Gelb, M.H., Reiss, Y., Ghomashchi, F. & Farnsworth, C.C. Exploring the specificity of prenyl protein-specific methyltranferase with synthetic prenylated rab peptides. Bioorg. Med. Chem. Lett. 8, 881–886 (1995).

    Article  Google Scholar 

  9. Yokoyama, K., Goodwin, G.W., Ghomashchi, F., Glomset, J. & Gelb, M.H. Protein prenyltransferases. Biochem. Soc. Trans. 20, 489–494 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Casey, P.J. & Seabra, M.C. Protein prenyltransferases. J. Biol. Chem. 271, 5289–5292 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Taylor, J.S., Reid, T.S., Terry, K.L., Casey, P.J. & Beese, L.S. Structure of mammalian protein geranylgeranyltransferase type-I. EMBO J. 22, 5963–5974 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Long, S.B., Casey, P.J. & Beese, L.S. Reaction path of protein farnesyltransferase at atomic resolution. Nature 419, 645–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, H., Seabra, M.C. & Deisenhofer, J. Crystal structure of Rab geranylgeranyltransferase at 2 angstrom resolution. Structure 8, 241–251 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Hicks, K.A., Hartman, H.L. & Fierke, C.A. Upstream polybasic region in peptides enhances dual specificity for prenylation by both farnesyltransferase and geranylgeranyltransferase type I. Biochemistry 44, 15325–15333 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Yokoyama, K., Goodwin, G.W., Ghomashchi, F., Glomset, J.A. & Gelb, M.H. A protein geranylgeranyltransferase from bovine brain: implications for protein prenylation specificity. Proc. Natl. Acad. Sci. USA 88, 5302–5306 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Reid, T.S., Terry, K.L., Casey, P.J. & Beese, L.S. Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity. J. Mol. Biol. 343, 417–433 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Long, S.B., Casey, P.J. & Beese, L.S. The basis for K-Ras4B binding specificity to protein farnesyltransferase revealed by 2 A resolution ternary complex structures. Structure 8, 209–222 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Leung, K.F., Baron, R. & Seabra, M.C. Thematic review series: lipid posttranslational modifications. Geranylgeranylation of Rab GTPases. J. Lipid Res. 47, 467–475 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Winter-Vann, A.M. & Casey, P.J. Post-prenylation-processing enzymes as new targets in oncogenesis. Nat. Rev. Cancer 5, 405–412 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Young, S.G., Clarke, S., Bergo, M.O., Philips, M. & Fong, L.G. in The Enzymes Vol. 24 (eds Clarke, S.G. & Tamanoi, F.) 273–301 (Academic/Elsevier, San Diego, 2006).

    Google Scholar 

  21. Tam, A. et al. Dual roles for Ste24p in yeast a-factor maturation: NH2-terminal proteolysis and COOH-terminal CAAX processing. J. Cell Biol. 142, 635–649 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boyartchuk, V.L., Ashby, M.N. & Rine, J. Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science 275, 1796–1800 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Trueblood, C.E. et al. The CaaX proteases, Afc1p and Rce1p, have overlapping but distinct substrate specificities. Mol. Cell. Biol. 20, 4381–4392 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schmidt, W.K., Tam, A., Fujimura-Kamada, K. & Michaelis, S. Endoplasmic reticulum membrane localization of Rce1p and Ste24p, yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage. Proc. Natl. Acad. Sci. USA 95, 11175–11180 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Tam, A., Schmidt, W.K. & Michaelis, S. The multispanning membrane protein Ste24p catalyzes CAAX proteolysis and NH2-terminal processing of the yeast a-factor precursor. J. Biol. Chem. 276, 46798–46806 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Ma, Y.T., Chaudhuri, A. & Rando, R.R. Substrate specificity of the isoprenylated protein endoprotease. Biochemistry 31, 11772–11777 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Ma, Y.T., Gilbert, B.A. & Rando, R.R. Inhibitors of the isoprenylated protein endoprotease. Biochemistry 32, 2386–2393 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Jang, G.F. & Gelb, M.H. Substrate specificity of mammalian prenyl protein-specific endoprotease activity. Biochemistry 37, 4473–4481 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Dolence, J.M., Steward, L.E., Dolence, E.K., Wong, D.H. & Poulter, C.D. Studies with recombinant Saccharomyces cerevisiae CaaX prenyl protease Rce1p. Biochemistry 39, 4096–4104 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, Y., Ma, Y.T. & Rando, R.R. Solubilization, partial purification, and affinity labeling of the membrane-bound isoprenylated protein endoprotease. Biochemistry 35, 3227–3237 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Otto, J.C. et al. Cloning and characterization of a mammalian prenyl protein-specific endoprtease. J. Biol. Chem. 274, 8379–8382 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Pei, J. & Grishin, N.V. Type II CAAX prenyl endopeptidases belong to a novel superfamily of putative membrane-bound metalloproteases. Trends Biochem. Sci. 26, 275–277 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Plummer, L.J. et al. Mutational analysis of the ras converting enzyme reveals a requirement for glutamate and histidine residues. J. Biol. Chem. 281, 4596–4605 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Bergo, M.O. et al. On the physiological importance of endoproteolysis of CAAX proteins: heart-specific RCE1 knockout mice develop a lethal cardiomyopathy. J. Biol. Chem. 279, 4729–4736 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, E. et al. Disruption of the mouse Rce1 gene results in defective Ras processing and mislocalization of Ras within cells. J. Biol. Chem. 274, 8383–8390 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Bergo, M.O. et al. Absence of the CAAX endoprotease Rce1: effects on cell growth and transformation. Mol. Cell. Biol. 22, 171–181 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schlitzer, M., Winter-Vann, A. & Casey, P.J. Non-peptidic, non-prenylic inhibitors of the prenyl protein-specific protease Rce1. Bioorg. Med. Chem. Lett. 11, 425–427 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Romano, J.D., Schmidt, W.K. & Michaelis, S. The Saccharomyces cerevisiae prenylcysteine carboxyl methyltransferase Ste14p is in the endoplasmic reticulum membrane. Mol. Biol. Cell 9, 2231–2247 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Romano, J.D. & Michaelis, S. Topological and mutational analysis of Saccharomyces cerevisiae Ste14p, founding member of the isoprenylcysteine carboxyl methyltransferase family. Mol. Biol. Cell 12, 1957–1971 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Anderson, J.L. & Hrycyna, C.A. in The Enzymes Vol. 24 (eds Clarke, S.G. & Tamanoi, F.) 245–272 (Academic/Elsevier, San Diego, 2006).

    Google Scholar 

  41. Anderson, J.L., Frase, H., Michaelis, S. & Hrycyna, C.A. Purification, functional reconstitution, and characterization of the Saccharomyces cerevisiae isoprenylcysteine carboxylmethyltransferase Ste14p. J. Biol. Chem. 280, 7336–7345 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Bergo, M.O. et al. Isoprenylcysteine carboxyl methyltransferase deficiency in mice. J. Biol. Chem. 276, 5841–5845 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Bergo, M.O. et al. Targeted inactivation of the isoprenylcysteine carboxyl methyltransferase gene causes mislocalization of K-Ras in mammalian cells. J. Biol. Chem. 275, 17605–17610 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Bergo, M.O. et al. Inactivation of Icmt inhibits transformation by oncogenic K-Ras and B-Raf. J. Clin. Invest. 113, 539–550 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sapperstein, S., Berkower, C. & Michaelis, S. Nucleotide sequence of the yeast STE14 gene, which encodes farnesylcysteine carboxyl methyltransferase, and demonstration of its essential role in a-factor export. Mol. Cell. Biol. 14, 1438–1449 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wright, L.P. & Philips, M.R. CAAX modification and membrane targeting of Ras. J. Lipid Res. 47, 883–891 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Philips, M.R. Methotrexate and Ras methylation: a new trick for an old drug? Sci. STKE 2004, pe13 (2004).

    PubMed  Google Scholar 

  48. Winter-Vann, A.M. et al. Targeting Ras signaling through inhibition of carboxyl methylation: an unexpected property of methotrexate. Proc. Natl. Acad. Sci. USA 100, 6529–6534 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Michaelson, D. et al. Postprenylation CAAX processing is required for proper localization of Ras but not Rho GTPases. Mol. Biol. Cell 16, 1606–1616 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Winter-Vann, A.M. et al. A small-molecule inhibitor of isoprenylcysteine carboxyl methyltransferase with antitumor activity in cancer cells. Proc. Natl. Acad. Sci. USA 102, 4336–4341 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Anderson, J.L., Henriksen, B.S., Gibbs, R.A. & Hrycyna, C.A. The isoprenoid substrate specificity of isoprenylcysteine carboxylmethyltransferase: development of novel inhibitors. J. Biol. Chem. 280, 29454–29461 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Smotrys, J.E. & Linder, M.E. Palmitoylation of intracellular signaling proteins: regulation and function. Annu. Rev. Biochem. 73, 559–587 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Dietrich, L.E.P. & Ungermann, C. On the mechanism of protein palmitoylation. EMBO Rep. 5, 1053–1057 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Linder, M.E. & Deschenes, R.J. New insights into the mechanisms of protein palmitoylation. Biochemistry 42, 4311–4320 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Hancock, J.F. Ras proteins: different signals from different locations. Nat. Rev. Mol. Cell Biol. 4, 373–384 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Webb, Y., Hermida-Matsumoto, L. & Resh, M.D. Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J. Biol. Chem. 275, 261–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Lawrence, D.S., Zilfou, J.T. & Smith, C.D. Structure-activity studies of cerulenin analogues as protein palmitoylation inhibitors. J. Med. Chem. 42, 4932–4941 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Reents, R., Wagner, M., Kuhlmann, J. & Waldmann, H. Synthesis and application of fluorescence-labeled Ras-proteins for live-cell imaging. Angew. Chem. Int. Edn Engl. 43, 2711–2714 (2004).

    Article  CAS  Google Scholar 

  59. Bartels, D.J., Mitchell, D.A., Dong, X.W. & Deschenes, R.J. Erf2, a novel gene product that affects the localization and palmitoylation of Ras2 in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 6775–6787 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lobo, S., Greentree, W.K., Linder, M.E. & Deschenes, R.J. Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J. Biol. Chem. 277, 41268–41273 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Swarthout, J.T. et al. DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H- and N-Ras. J. Biol. Chem. 280, 31141–31148 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Deck, P. et al. Development and biological evaluation of acyl protein thioesterase 1 (APT1) inhibitors. Angew. Chem. Int. Edn Engl. 44, 4975–4980 (2005).

    Article  CAS  Google Scholar 

  63. Duncan, J.A. & Gilman, A.G. A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein alpha subunits and p21(RAS). J. Biol. Chem. 273, 15830–15837 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Bader, B. et al. Bioorganic synthesis of lipid-modified proteins for the study of signal transduction. Nature 403, 223–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Dudler, T. & Gelb, M.H. Palmitoylation of Ha-Ras facilitates membrane binding, activation of downstream effectors, and meiotic maturation in Xenopus oocytes. J. Biol. Chem. 271, 11541–11547 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Silvius, J.R. Mechanisms of Ras protein targeting in mammalian cells. J. Membr. Biol. 190, 83–92 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Rocks, O. et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307, 1746–1752 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Goodwin, J.S. et al. Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J. Cell Biol. 170, 261–272 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Roy, S. et al. Individual palmitoyl residues serve distinct roles in H-ras trafficking, microlocalization, and signaling. Mol. Cell. Biol. 25, 6722–6733 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wittinghofer, A. & Waldmann, H. Ras - a molecular switch involved in tumor formation. Angew. Chem. Int. Edn Engl. 39, 4193–4214 (2000).

    Google Scholar 

  71. Edidin, M. The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Silvius, J.R. Lipidated peptides as tools for understanding the membrane interactions of lipid-modified proteins. Peptide-Lipid Interactions 52, 371–395 (2002).

    Article  CAS  Google Scholar 

  73. Hancock, J.F. & Parton, R.G. Ras plasma membrane signalling platforms. Biochem. J. 389, 1–11 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, T.Y., Leventis, R. & Silvius, J.R. Partitioning of lipidated peptide sequences into liquid-ordered lipid domains in model and biological membranes. Biochemistry 40, 13031–13040 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Nicolini, C. et al. Visualizing association of N-Ras in lipid microdomains: influence of domain structure and interfacial adsorption. J. Am. Chem. Soc. 128, 192–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Reuther, G. et al. Structural model of the membrane-bound C terminus of lipid-modified human N-Ras protein. Angew. Chem. Int. Edn Engl. 45, 5387–5390 (2006).

    Article  CAS  Google Scholar 

  78. Rotblat, B. et al. Three separable domains regulate GTP-dependent association of H-ras with the plasma membrane. Mol. Cell. Biol. 24, 6799–6810 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Plowman, S.J., Muncke, C., Parton, R.G. & Hancock, J.F. H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc. Natl. Acad. Sci. USA 102, 15500–15505 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Plowman, S.J. & Hancock, J.F. Ras signaling from plasma membrane and endomembrane microdomains. Biochimica et Biophysica Acta-Molecular Cell Research 1746, 274–283 (2005).

    Article  CAS  Google Scholar 

  81. Hancock, J.F., Cadwallader, K., Paterson, H. & Marshall, C.J.A. CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J. 10, 4033–4039 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Okeley, N.M. & Gelb, M.H. A designed probe for acidic phospholipids reveals the unique enriched anionic character of the cytosolic face of the mammalian plasma membrane. J. Biol. Chem. 279, 21833–21840 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Ishizaki, H. et al. Role of rab GDP dissociation inhibitor alpha in regulating plasticity of hippocampal neurotransmission. Proc. Natl. Acad. Sci. USA 97, 11587–11592 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. DerMardirossian, C. & Bokoch, G.M. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 15, 356–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Dovas, A. & Couchman, J.R. RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem. J. 390, 1–9 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hoffman, G.R., Nassar, N. & Cerione, R.A. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100, 345–356 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Pylypenko, O. et al. Structure of doubly prenylated Ypt1:GDI complex and the mechanism of GDI mediated Rab:membrane interaction. EMBO J. 25, 13–23 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pfeffer, S. & Aivazian, D. Targeting RAB GTPases to distinct membrane compartments. Nat. Rev. Mol. Cell Biol. 5, 886–896 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Nilsson, B.L., Soellner, M.B. & Raines, R.T. Chemical synthesis of proteins. Annu. Rev. Biophys. Biomol. Struct. 34, 91–118 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tamanoi, F. & Gau, C.L., Jiang, C., Edamatsu, H. & Kato-Stankiewicz, K. Protein farnesylation in mammalian cells: effects of farnesyltransferase inhibitors on cancer cells. Cell. Mol. Life Sci. 58, 1636–1649 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Basso, A., Kirshmeier, P. & Bishop, W.R. Farnesyltransferase inhibitors. J. Lipid Res. 47, 15–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Reid, T.S. & Beese, L.S. Crystal structures of the anticancer clinical candidates R115777 (Tipifarnib) and BMS-214662 complexed with protein farnesyltransferase suggest a mechanism of FTI selectivity. Biochemistry 43, 6877–6884 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Lobell, R.B. et al. Preclinial and clinical pharmacodynamic assessment of L-778,123, a dual inhibitor of farnesyl:protein transferase and geranylgeranyl:protein transferase type-I. Mol. Cancer Ther. 1, 747–758 (2002).

    CAS  PubMed  Google Scholar 

  94. Reid, T.S., Long, S.B. & Beese, L.S. Crystallographic analysis reveals that anticancer clinical candidate L-778,123 inhibits protein farnesyltransferase and geranylgeranyltransferase-I by different binding modes. Biochemistry 43, 9000–9008 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Lackner, M.R. et al. Chemical genetics identifies Rab geranylgeranyl transferase as an apoptotic target of farnesyl transferase inhibitors. Cancer Cell 7, 325–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Karp, J.E. et al. Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemia: a phase I clinical-laboratory correlative trial. Blood 97, 3361–3369 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Alsina, M. et al. Farnesyltransferase inhibitor tipifarnib is well tolerated, induces stabilization of disease and inhibits farnesylation and oncogenic/tumor survival pathways in patients with advanced multiple myeloma. Blood 103, 3271–3277 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Khuri, F.R. et al. Phase I study of the farnesyltransferase inhibitor lonafarnib with paclitaxel in solid tumors. Clin. Cancer Res. 10, 2968–2976 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. James, G.L., Goldstein, J.L. & Brown, M.S. Polylysine and CVIM sequences of K-RasB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. J. Biol. Chem. 270, 6221–6226 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Whyte, D.B. et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem. 272, 14459–14464 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Yoo, J. & Robinson, R.A. H-ras gene mutations in salivary gland mucoepidermoid carcinomas. Cancer 88, 518–523 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Burchill, S.A., Neal, D.E. & Lunec, J. Frequency of H-ras mutations in human bladder cancer detected by direct sequencing. Br. J. Urol. 73, 516–521 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Aoki, Y. et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat. Genet. 37, 1038–1040 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Estep, A.L., Tidyman, W.E., Teitell, M.A., Cotter, P.D. & Rauen, K.A. HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy. Am. J. Med. Genet. A 140, 8–16 (2006).

    Article  PubMed  CAS  Google Scholar 

  105. Gripp, K.W. et al. HRAS mutation analysis in Costello syndrome: genotype and phenotype correlation. Am. J. Med. Genet. A 140, 1–7 (2006).

    Article  PubMed  CAS  Google Scholar 

  106. Gomez, M., Sampson, J. & Whittemore, V. The Tuberous Sclerosis Complex (Oxford University Press, Oxford, 1999).

    Google Scholar 

  107. Gau, C.-L. et al. Farnesyltransferase inhibitors reverse altered growth and distribution of actin filaments in Tsc-deficient cells via inhibition of both rapamycin-sensitive and –insensitive pathways. Mol. Cancer Ther. 4, 918–926 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Basso, A.D. et al. The farnesyltransferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti-tumor activity. J. Biol. Chem. 280, 31101–31108 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Urano, J. et al. Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast. Mol. Microbiol. 58, 1074–1086 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Long, X., Lin, Y., Ortiz-Vega, S., Yonezawa, K. & Avruch, J. Rheb binds and regulates the mTOR kinase. Curr. Biol. 15, 702–713 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Carsillo, T., Astrindis, A. & Henske, E.P. Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc. Natl. Acad. Sci. USA 97, 6085–6090 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Bardelli, A. et al. PRL-3 expression in metastatic cancers. Clin. Cancer Res. 9, 5607–5615 (2003).

    CAS  PubMed  Google Scholar 

  113. Fiordalisi, J.J., Keller, P.J. & Cox, A.D. PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Res. 66, 3153–3161 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Lim, K.-H. et al. Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell 7, 533–545 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Hakem, A. et al. RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev. 19, 1974–1979 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Clark, E.A., Golub, T., Lander, E.S. & Hynes, R.O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532–535 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Carrico, D., Blaskovich, M.A., Bucher, C., Sebti, S. & Hamilton, A.D. Design, synthesis, and evaluation of potent and selective benzoyleneurea-based inhibitors of protein geranylgeranyltransferase-I. Bioorg. Med. Chem. 13, 677–688 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Peterson, Y.K., Kelly, P., Weinbaum, C.A. & Casey, P.J. A novel protein geranylgeranyltransferase-I inhibitor with high potency, selectivity and cellular activity. J. Biol. Chem. 281, 12445–12450 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423, 293–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Young, S.G., Fong, L.G. & Michaelis, S. Prelamin A, Zmpste24, misshapen cell nuclei, and progeria–new evidence suggesting that protein farnesylation could be important for disease pathogenesis. J. Lipid Res. 46, 2531–2558 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Bergo, M.O. et al. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc. Natl. Acad. Sci. USA 99, 13049–13054 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Pendas, A.M. et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat. Genet. 31, 94–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Fujimura-Kamada, K., Nouvet, F.J. & Michaelis, S. A novel membrane-associated metalloprotease, Ste24p, is required for the first step of NH2-terminal processing of the yeast a-factor precursor. J. Cell Biol. 136, 271–285 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tam, A. et al. Dual roles for Ste24p in yeast a-factor maturation: NH2-terminal proteolysis and COOH-terminal CAAX processing. J. Cell Biol. 142, 635–649 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Capell, B.C. et al. Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA 102, 12879–12884 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Glynn, M.W. & Glover, T.W. Incomplete processing of mutant lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum. Mol. Genet. 14, 2959–2969 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Goldman, R.D. et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA 101, 8963–8968 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Mallampalli, M.P., Huyer, G., Bendale, P., Gelb, M.H. & Michaelis, S. Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson-Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA 102, 14416–14421 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Toth, J.I. et al. Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc. Natl. Acad. Sci. USA 102, 12873–12878 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Yang, S.H. et al. Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proc. Natl. Acad. Sci. USA 102, 10291–10296 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Yang, S.H. et al. Farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J. Clin. Invest. 116, 2115–2121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fong, L.G. et al. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 311, 1621–1623 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Buckner, F.S. et al. Cloning, heterologous expression, and distinct substrate specificity of protein farnesyltransferase from Trypanosoma brucei. J. Biol. Chem. 275, 21870–21876 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Eastman, R.T., Buckner, F.S., Yokoyama, K., Gelb, M.H. & Van Voorhis, W.C. Thematic review series: lipid posttranslational modifications. Fighting parasitic disease by blocking protein farnesylation. J. Lipid Res. 47, 233–240 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Buckner, F.S., Eastman, R.T., Yokoyama, K., Gelb, M.H. & Van Voorhis, W.C. Protein farnesyl transferase inhibitors for the treatment of malaria and African trypanosomiasis. Curr. Opin. Investig. Drugs 6, 791–797 (2005).

    CAS  PubMed  Google Scholar 

  136. Gelb, M.H. et al. Protein farnesyl and N-myristoyl transferases: piggy-back medicinal chemistry targets for the development of antitrypanosomatid and antimalarial therapeutics. Mol. Biochem. Parasitol. 126, 155–163 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Eastman, R.T. et al. Resistance to a protein farnesyltransferase inhibitor in Plasmodium falciparum. J. Biol. Chem. 280, 13554–13559 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Nallan, L. et al. Protein farnesyltransferase inhibitors exhibit potent antimalarial activity. J. Med. Chem. 48, 3704–3713 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants AI054384 to M.H.G., GM41223 to S.M. and CA32737 and CA41996 to F.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H Gelb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelb, M., Brunsveld, L., Hrycyna, C. et al. Therapeutic intervention based on protein prenylation and associated modifications. Nat Chem Biol 2, 518–528 (2006). https://doi.org/10.1038/nchembio818

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio818

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing