Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Golgicide A reveals essential roles for GBF1 in Golgi assembly and function

Abstract

ADP ribosylation factor 1 (Arf1) plays a critical role in regulating secretory traffic and membrane transport within the Golgi of eukaryotic cells. Arf1 is activated by guanine nucleotide exchange factors (ArfGEFs), which confer spatial and temporal specificity to vesicular transport. We describe here the discovery and characterization of golgicide A, a potent, highly specific, reversible inhibitor of the cis-Golgi ArfGEF GBF1. Inhibition of GBF1 function resulted in rapid dissociation of COPI vesicle coat from Golgi membranes and subsequent disassembly of the Golgi and trans-Golgi network. Secretion of soluble and membrane-associated proteins was arrested at the endoplasmic reticulum–Golgi intermediate compartment, whereas endocytosis and recycling of transferrin were unaffected by GBF1 inhibition. Internalized shiga toxin was arrested within the endocytic compartment and was unable to reach the dispersed trans-Golgi network. Collectively, these results highlight the central role for GBF1 in coordinating bidirectional transport and maintaining structural integrity of the Golgi.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discovery of GCA as a potent and effective inhibitor of Stx susceptibility.
Figure 2: GCA disperses medial- and cis-Golgi, inhibits COPI recruitment and maintains localization of AP-1 and GGA3 to TGN.
Figure 3: The effects of GCA are similar to expression of inactive GBF1-E794K.
Figure 4: GCA is selective for GBF1.
Figure 5: GCA causes a decrease in GBF1-dependent Arf1 activation.
Figure 6: GBF1 inhibition arrests secretion of membrane-anchored and soluble proteins.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Donaldson, J.G., Honda, A. & Weigert, R. Multiple activities for Arf1 at the Golgi complex. Biochim. Biophys. Acta 1744, 364–373 (2005).

    Article  CAS  Google Scholar 

  2. Cohen, L.A. et al. Active Arf6 recruits ARNO/cytohesin GEFs to the PM by binding their PH domains. Mol. Biol. Cell 18, 2244–2253 (2007).

    Article  CAS  Google Scholar 

  3. Shmuel, M. et al. ARNO through its coiled-coil domain regulates endocytosis at the apical surface of polarized epithelial cells. J. Biol. Chem. 281, 13300–13308 (2006).

    Article  CAS  Google Scholar 

  4. Szul, T. et al. Dissecting the role of the ARF guanine nucleotide exchange factor GBF1 in Golgi biogenesis and protein trafficking. J. Cell Sci. 120, 3929–3940 (2007).

    Article  CAS  Google Scholar 

  5. Zhao, X. et al. GBF1, a cis-Golgi and VTCs-localized ARF-GEF, is implicated in ER-to-Golgi protein traffic. J. Cell Sci. 119, 3743–3753 (2006).

    Article  CAS  Google Scholar 

  6. Claude, A. et al. GBF1: a novel Golgi-associated BFA-resistant guanine nucleotide exchange factor that displays specificity for ADP-ribosylation factor 5. J. Cell Biol. 146, 71–84 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pacheco-Rodriguez, G., Moss, J. & Vaughan, M. BIG1 and BIG2: brefeldin A-inhibited guanine nucleotide-exchange proteins for ADP-ribosylation factors. Methods Enzymol. 345, 397–404 (2002).

    Article  Google Scholar 

  8. Shinotsuka, C., Waguri, S., Wakasugi, M., Uchiyama, Y. & Nakayama, K. Dominant-negative mutant of BIG2, an ARF-guanine nucleotide exchange factor, specifically affects membrane trafficking from the trans-Golgi network through inhibiting membrane association of AP-1 and GGA coat proteins. Biochem. Biophys. Res. Commun. 294, 254–260 (2002).

    Article  CAS  Google Scholar 

  9. Bonifacino, J.S. & Glick, B.S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    Article  CAS  Google Scholar 

  10. Boehm, M., Aguilar, R.C. & Bonifacino, J.S. Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (ARFs). EMBO J. 20, 6265–6276 (2001).

    Article  CAS  Google Scholar 

  11. Robinson, M.S. Adaptable adaptors for coated vesicles. Trends Cell Biol. 14, 167–174 (2004).

    Article  CAS  Google Scholar 

  12. Boman, A.L., Zhang, C., Zhu, X. & Kahn, R.A. A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol. Biol. Cell 11, 1241–1255 (2000).

    Article  CAS  Google Scholar 

  13. Dell'Angelica, E.C. et al. GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J. Cell Biol. 149, 81–94 (2000).

    Article  CAS  Google Scholar 

  14. Doray, B., Ghosh, P., Griffith, J., Geuze, H.J. & Kornfeld, S. Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network. Science 297, 1700–1703 (2002).

    Article  CAS  Google Scholar 

  15. Ghosh, P. & Kornfeld, S. The GGA proteins: key players in protein sorting at the trans-Golgi network. Eur. J. Cell Biol. 83, 257–262 (2004).

    Article  CAS  Google Scholar 

  16. Manolea, F., Claude, A., Chun, J., Rosas, J. & Melancon, P. Distinct functions for Arf guanine nucleotide exchange factors at the Golgi complex: GBF1 and BIGs are required for assembly and maintenance of the Golgi stack and trans-Golgi network, respectively. Mol. Biol. Cell 19, 523–535 (2008).

    Article  CAS  Google Scholar 

  17. Citterio, C. et al. Unfolded protein response and cell death after depletion of brefeldin A-inhibited guanine nucleotide-exchange protein GBF1. Proc. Natl. Acad. Sci. USA 105, 2877–2882 (2008).

    Article  CAS  Google Scholar 

  18. Lefrancois, S. & McCormick, P.J. The Arf GEF GBF1 is required for GGA recruitment to Golgi membranes. Traffic 8, 1440–1451 (2007).

    Article  CAS  Google Scholar 

  19. Holloway, Z.G. et al. Activation of ADP-ribosylation factor regulates biogenesis of the ATP7A-containing trans-Golgi network compartment and its Cu-induced trafficking. Am. J. Physiol. Cell Physiol. 293, C1753–C1767 (2007).

    Article  CAS  Google Scholar 

  20. Monetta, P., Slavin, I., Romero, N. & Alvarez, C. Rab1b interacts with GBF1 and modulates both ARF1 dynamics and COPI association. Mol. Biol. Cell 18, 2400–2410 (2007).

    Article  CAS  Google Scholar 

  21. Szul, T. et al. Dissection of membrane dynamics of the ARF-guanine nucleotide exchange factor GBF1. Traffic 6, 374–385 (2005).

    Article  CAS  Google Scholar 

  22. Saenz, J.B., Doggett, T.A. & Haslam, D.B. Identification and characterization of small molecules that inhibit intracellular toxin transport. Infect. Immun. 75, 4552–4561 (2007).

    Article  CAS  Google Scholar 

  23. Lippincott-Schwartz, J. et al. Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell 60, 821–836 (1990).

    Article  CAS  Google Scholar 

  24. Doms, R.W., Russ, G. & Yewdell, J.W. Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum. J. Cell Biol. 109, 61–72 (1989).

    Article  CAS  Google Scholar 

  25. Puri, S. & Linstedt, A.D. Capacity of the golgi apparatus for biogenesis from the endoplasmic reticulum. Mol. Biol. Cell 14, 5011–5018 (2003).

    Article  CAS  Google Scholar 

  26. Presley, J.F. et al. Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport. Nature 417, 187–193 (2002).

    Article  CAS  Google Scholar 

  27. Liu, W., Duden, R., Phair, R.D. & Lippincott-Schwartz, J. ArfGAP1 dynamics and its role in COPI coat assembly on Golgi membranes of living cells. J. Cell Biol. 168, 1053–1063 (2005).

    Article  CAS  Google Scholar 

  28. Helms, J.B. & Rothman, J.E. Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360, 352–354 (1992).

    Article  CAS  Google Scholar 

  29. Sandvig, K., Prydz, K., Hansen, S.H. & van Deurs, B. Ricin transport in brefeldin A-treated cells: correlation between Golgi structure and toxic effect. J. Cell Biol. 115, 971–981 (1991).

    Article  CAS  Google Scholar 

  30. Prydz, K., Hansen, S.H., Sandvig, K. & van Deurs, B. Effects of brefeldin A on endocytosis, transcytosis and transport to the Golgi complex in polarized MDCK cells. J. Cell Biol. 119, 259–272 (1992).

    Article  CAS  Google Scholar 

  31. Hunziker, W., Whitney, J.A. & Mellman, I. Selective inhibition of transcytosis by brefeldin A in MDCK cells. Cell 67, 617–627 (1991).

    Article  CAS  Google Scholar 

  32. Niu, T.K., Pfeifer, A.C., Lippincott-Schwartz, J. & Jackson, C.L. Dynamics of GBF1, a Brefeldin A-sensitive Arf1 exchange factor at the Golgi. Mol. Biol. Cell 16, 1213–1222 (2005).

    Article  CAS  Google Scholar 

  33. Peyroche, A. et al. Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol. Cell 3, 275–285 (1999).

    Article  CAS  Google Scholar 

  34. Renault, L., Guibert, B. & Cherfils, J. Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. Nature 426, 525–530 (2003).

    Article  CAS  Google Scholar 

  35. Santy, L.C. & Casanova, J.E. Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J. Cell Biol. 154, 599–610 (2001).

    Article  CAS  Google Scholar 

  36. Hirschberg, K. et al. Kinetic analysis of secretory protein traffic and characterization of golgi to plasma membrane transport intermediates in living cells. J. Cell Biol. 143, 1485–1503 (1998).

    Article  CAS  Google Scholar 

  37. El Meskini, R. et al. A signal sequence is sufficient for green fluorescent protein to be routed to regulated secretory granules. Endocrinology 142, 864–873 (2001).

    Article  CAS  Google Scholar 

  38. Lin, W.H., Larsen, K., Hortin, G.L. & Roth, J.A. Recognition of substrates by tyrosylprotein sulfotransferase. Determination of affinity by acidic amino acids near the target sites. J. Biol. Chem. 267, 2876–2879 (1992).

    CAS  PubMed  Google Scholar 

  39. Niehrs, C. & Huttner, W.B. Purification and characterization of tyrosylprotein sulfotransferase. EMBO J. 9, 35–42 (1990).

    Article  CAS  Google Scholar 

  40. Feng, Y. et al. Exo1: a new chemical inhibitor of the exocytic pathway. Proc. Natl. Acad. Sci. USA 100, 6469–6474 (2003).

    Article  CAS  Google Scholar 

  41. Feng, Y. et al. Retrograde transport of cholera toxin from the plasma membrane to the endoplasmic reticulum requires the trans-Golgi network but not the Golgi apparatus in Exo2-treated cells. EMBO Rep. 5, 596–601 (2004).

    Article  CAS  Google Scholar 

  42. Newton, A.J., Kirchhausen, T. & Murthy, V.N. Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc. Natl. Acad. Sci. USA 103, 17955–17960 (2006).

    Article  CAS  Google Scholar 

  43. Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839–850 (2006).

    Article  CAS  Google Scholar 

  44. Pelish, H.E. et al. Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro. Nat. Chem. Biol. 2, 39–46 (2006).

    Article  CAS  Google Scholar 

  45. Hafner, M. et al. Inhibition of cytohesins by SecinH3 leads to hepatic insulin resistance. Nature 444, 941–944 (2006).

    Article  CAS  Google Scholar 

  46. Zeeh, J.C. et al. Dual specificity of the interfacial inhibitor brefeldin a for arf proteins and sec7 domains. J. Biol. Chem. 281, 11805–11814 (2006).

    Article  CAS  Google Scholar 

  47. Renault, L., Christova, P., Guibert, B., Pasqualato, S. & Cherfils, J. Mechanism of domain closure of Sec7 domains and role in BFA sensitivity. Biochemistry 41, 3605–3612 (2002).

    Article  CAS  Google Scholar 

  48. Garcia-Mata, R., Szul, T., Alvarez, C. & Sztul, E. ADP-ribosylation factor/COPI-dependent events at the endoplasmic reticulum-Golgi interface are regulated by the guanine nucleotide exchange factor GBF1. Mol. Biol. Cell 14, 2250–2261 (2003).

    Article  CAS  Google Scholar 

  49. Zhao, L. & Haslam, D.B. A quantitative and highly sensitive luciferase-based assay for bacterial toxins that inhibit protein synthesis. J. Med. Microbiol. 54, 1023–1030 (2005).

    Article  CAS  Google Scholar 

  50. Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Chiang and the Institute of Chemistry and Cellular Biology (ICCB)-Longwood staff for their assistance with screening, J. Loughman (Washington University School of Medicine) for synthesis of MDCK cell cDNA, P. Melançon (University of Alberta) for providing the hamster GBF1 cDNA, M. Vaughn (US National Heart, Lung, and Blood Institute) for providing the BIG1-HA cDNA, M. Haslam for technical assistance and S. Kornfeld and G. Bu for advice and critical review of the manuscript. This work was supported by US National Institutes of Health grant U54 AI057160 to the Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research (MRCE) and by an Investigators in Microbial Pathogenesis Award from the Burroughs Wellcome Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.B.S., W.J.S. and J.L. performed experiments. J.B.S. and W.J.S. assisted in manuscript preparation. B.B. performed docking and molecular modeling computations. J.W.C. synthesized and analyzed GCA. N.S.G. designed chemical synthesis, analyzed GCA and assisted in manuscript preparation. D.B.H. designed, performed and analyzed experiments and prepared the manuscript.

Corresponding author

Correspondence to David B Haslam.

Ethics declarations

Competing interests

D.B.H. has applied for a patent on the use of Golgicide A as a reagent for cell biology research.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Methods (PDF 2048 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sáenz, J., Sun, W., Chang, J. et al. Golgicide A reveals essential roles for GBF1 in Golgi assembly and function. Nat Chem Biol 5, 157–165 (2009). https://doi.org/10.1038/nchembio.144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing