Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeted disruption of the EZH2–EED complex inhibits EZH2-dependent cancer

Abstract

Enhancer of zeste homolog 2 (EZH2) is the histone lysine N-methyltransferase component of the Polycomb repressive complex 2 (PRC2), which, in conjunction with embryonic ectoderm development (EED) and suppressor of zeste 12 homolog, regulates cell lineage determination and homeostasis. Enzymatic hyperactivity has been linked to aberrant repression of tumor suppressor genes in diverse cancers. Here, we report the development of stabilized α-helix of EZH2 (SAH-EZH2) peptides that selectively inhibit H3 Lys27 trimethylation by dose-responsively disrupting the EZH2–EED complex and reducing EZH2 protein levels, a mechanism distinct from that reported for small-molecule EZH2 inhibitors targeting the enzyme catalytic domain. MLL-AF9 leukemia cells, which are dependent on PRC2, undergo growth arrest and monocyte-macrophage differentiation upon treatment with SAH-EZH2, consistent with observed changes in expression of PRC2-regulated, lineage-specific marker genes. Thus, by dissociating the EZH2–EED complex, we pharmacologically modulate an epigenetic 'writer' and suppress PRC2-dependent cancer cell growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis, EED-binding activity and cellular penetration of SAH-EZH2 peptides.
Figure 2: Sequence-dependent dissociation of EED–EZH1 and EED–EZH2 complexes and impairment of PRC2 activity by SAH-EZH2.
Figure 3: SAH-EZH2 induces cell cycle arrest and inhibits proliferation of MLL-AF9 leukemia cells.
Figure 4: SAH-EZH2 induces monocyte-macrophage differentiation of MLL-AF9 leukemia cells.
Figure 5: Cell viability effects of SAH-EZH2 and GSK126.

Similar content being viewed by others

References

  1. Cao, R. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Czermin, B. et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Müller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208 (2002).

    Article  PubMed  Google Scholar 

  4. Kuzmichev, A. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16, 2893–2905 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Varambally, S. et al. The Polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Kleer, C.G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl. Acad. Sci. USA 100, 11606–11611 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. He, L.-R. et al. High expression of EZH2 is associated with tumor aggressiveness and poor prognosis in patients with esophageal squamous cell carcinoma treated with definitive chemoradiotherapy. Int. J. Cancer 127, 138–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, C. et al. EZH2 mediates epigenetic silencing of neuroblastoma suppressor genes CASZ1, CLU, RUNX3, and NGFR. Cancer Res. 72, 315–324 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Yu, J. et al. Integrative genomics analysis reveals silencing of β-adrenergic signaling by Polycomb in prostate cancer. Cancer Cell 12, 419–431 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Kong, D. et al. Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS ONE 7, e33729 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Varambally, S. et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322, 1695–1699 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morin, R.D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McCabe, M.T. et al. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc. Natl. Acad. Sci. USA 109, 2989–2994 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Béguelin, W. et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23, 677–692 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Fussbroich, B. et al. EZH2 depletion blocks the proliferation of colon cancer cells. PLoS ONE 6, e21651 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fujii, S., Ito, K., Ito, Y. & Ochiai, A. Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. J. Biol. Chem. 283, 17324–17332 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wilson, B.G. et al. Epigenetic antagonism between Polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18, 316–328 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chamberlain, S.J., Yee, D. & Magnuson, T. Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells 26, 1496–1505 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shen, X. et al. Jumonji modulates Polycomb activity and self-renewal versus differentiation of stem cells. Cell 139, 1303–1314 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Knutson, S.K. et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat. Chem. Biol. 8, 890–896 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. McCabe, M.T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012).

    CAS  PubMed  Google Scholar 

  22. Han, Z. et al. Structural basis of EZH2 recognition by EED. Structure 15, 1306–1315 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Neff, T. et al. Polycomb repressive complex 2 is required for MLL-AF9 leukemia. Proc. Natl. Acad. Sci. USA 109, 5028–5033 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi, J. et al. The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;NrasG12D acute myeloid leukemia. Oncogene 10.1038/onc.2012.110 (2013).

  25. Walensky, L.D. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moellering, R.E. et al. Direct inhibition of the NOTCH transcription factor complex. Nature 462, 182–188 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deshayes, S., Morris, M.C., Divita, G. & Heitz, F. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell. Mol. Life Sci. 62, 1839–1849 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Shen, X. et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol. Cell 32, 491–502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ezhkova, E. et al. EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev. 25, 485–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Margueron, R. et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol. Cell 32, 503–518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Byvoet, P., Shepherd, G.R., Hardin, J.M. & Noland, B.J. The distribution and turnover of labeled methyl groups in histone fractions of cultured mammalian cells. Arch. Biochem. Biophys. 148, 558–567 (1972).

    Article  CAS  PubMed  Google Scholar 

  32. Sasaki, M., Yamaguchi, J., Itatsu, K., Ikeda, H. & Nakanuma, Y. Over-expression of Polycomb group protein EZH2 relates to decreased expression of p16 INK4a in cholangiocarcinogenesis in hepatolithiasis. J. Pathol. 215, 175–183 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Bracken, A.P. et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krivtsov, A.V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Toren, A. et al. CD133-positive hematopoietic stem cell 'stemness' genes contain many genes mutated or abnormally expressed in leukemia. Stem Cells 23, 1142–1153 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Suetsugu, A. et al. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem. Biophys. Res. Commun. 351, 820–824 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Singh, S.K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Di Tullio, A., Vu Manh, T.P., Schubert, A., Månsson, R. & Graf, T. CCAAT/enhancer binding protein α (C/EBPα)-induced transdifferentiation of pre-B cells into macrophages involves no overt retrodifferentiation. Proc. Natl. Acad. Sci. USA 108, 17016–17021 (2011); erratum 109, 11053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pinto do, O.P. Hematopoietic progenitor/stem cells immortalized by Lhx2 generate functional hematopoietic cells in vivo. Blood 99, 3939–3946 (2002).

    Article  Google Scholar 

  40. Lee, S.T. et al. Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers. Mol. Cell 43, 798–810 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Xu, K. et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338, 1465–1469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. You, J.S. & Jones, P.A. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22, 9–20 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hinz, S. et al. Expression of the Polycomb group protein EZH2 and its relation to outcome in patients with urothelial carcinoma of the bladder. J. Cancer Res. Clin. Oncol. 134, 331–336 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Tan, J. et al. Pharmacologic disruption of Polycomb-repressive complex 2–mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21, 1050–1063 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Momparler, R.L., Idaghdour, Y., Marquez, V.E. & Momparler, L.F. Synergistic antileukemic action of a combination of inhibitors of DNA methylation and histone methylation. Leuk. Res. 36, 1049–1054 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Miranda, T.B. et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol. Cancer Ther. 8, 1579–1588 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chiang, P.K. Biological effects of inhibitors of S-adenosylhomocysteine hydrolase. Pharmacol. Ther. 77, 115–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Borchardt, R.T., Keller, B.T. & Patel-Thombre, U. Neplanocin A. A potent inhibitor of S-adenosylhomocysteine hydrolase and of vaccinia virus multiplication in mouse L929 cells. J. Biol. Chem. 259, 4353–4358 (1984).

    CAS  PubMed  Google Scholar 

  49. Bowen, N.J., Fujita, N., Kajita, M. & Wade, P.A. Mi-2/NuRD: multiple complexes for many purposes. Biochim. Biophys. Acta 1677, 52–57 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Ho, L. & Crabtree, G.R. Chromatin remodelling during development. Nature 463, 474–484 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chou, T.-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58, 621–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Walensky, L.D. et al. A stapled BID BH3 helix directly binds and activates BAX. Mol. Cell 24, 199–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Stewart, M.L., Fire, E., Keating, A.E. & Walensky, L.D. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat. Chem. Biol. 6, 595–601 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bird, G.H. et al. Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic. Proc. Natl. Acad. Sci. USA 107, 14093–14098 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Smith for graphics assistance. This work was supported by US National Institutes of Health grant U01CA105423 to S.H.O. and 5R01GM090299 and a Leukemia and Lymphoma Society Specialized Center of Research project grant to L.D.W. S.H.O. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

W.K., L.D.W. and S.H.O. designed the experiments and wrote the manuscript. W.K. and G.H.B. synthesized the stapled peptides. T.N. generated MLL-AF9 cells and assisted W.K. with the colony-forming assay and morphological studies. G.G. performed the high-throughput microfluidic qPCR. M.A.K. assisted W.K. with the studies on HPC5, M1 and C1498 cell lines.

Corresponding authors

Correspondence to Loren D Walensky or Stuart H Orkin.

Ethics declarations

Competing interests

L.D.W. is a scientific advisory board member and consultant for Aileron Therapeutics.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–21 and Supplementary Tables 1 and 2. (PDF 9479 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, W., Bird, G., Neff, T. et al. Targeted disruption of the EZH2–EED complex inhibits EZH2-dependent cancer. Nat Chem Biol 9, 643–650 (2013). https://doi.org/10.1038/nchembio.1331

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1331

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer