Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells

Abstract

Dysfunctional telomeres suppress tumour progression by activating cell-intrinsic programs that lead to growth arrest. Increased levels of TRF2, a key factor in telomere protection, are observed in various human malignancies and contribute to oncogenesis. We demonstrate here that a high level of TRF2 in tumour cells decreased their ability to recruit and activate natural killer (NK) cells. Conversely, a reduced dose of TRF2 enabled tumour cells to be more easily eliminated by NK cells. Consistent with these results, a progressive upregulation of TRF2 correlated with decreased NK cell density during the early development of human colon cancer. By screening for TRF2-bound genes, we found that HS3ST4—a gene encoding for the heparan sulphate (glucosamine) 3-O-sulphotransferase 4—was regulated by TRF2 and inhibited the recruitment of NK cells in an epistatic relationship with TRF2. Overall, these results reveal a TRF2-dependent pathway that is tumour-cell extrinsic and regulates NK cell immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TRF2 dosage modulates the tumorigenicity of mouse and human tumour cells.
Figure 2: Partial TRF2 inhibition does not impair in vitro growth properties of various tumour cell lines.
Figure 3: Partial TRF2 inhibition in various tumour cell lines does not uncap telomeres.
Figure 4: IL-6 is necessary and sufficient to prevent telomere uncapping on TRF2 partial inhibition.
Figure 5: The modulation of tumorigenicity by TRF2 dosage correlates with NK cell recruitment and activation.
Figure 6: The reduced tumorigenicity of TRF2-compromised cells is dependent on NK cells.
Figure 7: TRF2 dosage influences NK cell infiltration in a HS3ST4-dependent manner.
Figure 8: TRF2 expression is negatively correlated with NK cell density during the early stages of colon carcinogenesis.

Similar content being viewed by others

References

  1. Blackburn, E. H., Greider, C. W. & Szostak, J. W. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and ageing. Nat. Med. 12, 1133–1138 (2006).

    Article  CAS  Google Scholar 

  2. Blackburn, E. H. Telomere states and cell fates. Nature 408, 53–56 (2000).

    Article  CAS  Google Scholar 

  3. d’Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    Article  Google Scholar 

  4. Rudolph, K. L., Millard, M., Bosenberg, M. W. & DePinho, R. A. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat. Genet. 28, 155–159 (2001).

    Article  CAS  Google Scholar 

  5. Gonzalez-Suarez, E., Samper, E., Flores, J. M. & Blasco, M. A. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat. Genet. 26, 114–117 (2000).

    Article  CAS  Google Scholar 

  6. Guo, X. et al. Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J. 26, 4709–4719 (2007).

    Article  CAS  Google Scholar 

  7. Feldser, D. M. & Greider, C. W. Short telomeres limit tumour progression in vivo by inducing senescence. Cancer Cell 11, 461–469 (2007).

    Article  CAS  Google Scholar 

  8. Cosme-Blanco, W. et al. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep. 8, 497–503 (2007).

    Article  CAS  Google Scholar 

  9. Ding, Z. et al. Telomerase reactivation following telomere dysfunction yields murine prostate tumours with bone metastases. Cell 148, 896–907 (2012).

    Article  CAS  Google Scholar 

  10. Cech, T. R. Beginning to understand the end of the chromosome. Cell 116, 273–279 (2004).

    Article  CAS  Google Scholar 

  11. Giraud-Panis, M. J. et al. One identity or more for telomeres? Front Oncol. 3, 48 (2013).

    Article  Google Scholar 

  12. De Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article  CAS  Google Scholar 

  13. Broccoli, D., Smogorzewska, A., Chong, L. & de Lange, T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat. Genet. 17, 231–235 (1997).

    Article  CAS  Google Scholar 

  14. Bilaud, T. et al. Telomeric localization of TRF2, a novel human telobox protein. Nat. Genet. 17, 236–239 (1997).

    Article  CAS  Google Scholar 

  15. Celli, G. B. & de Lange, T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat. Cell Biol. 7, 712–718 (2005).

    Article  CAS  Google Scholar 

  16. Karlseder, J., Broccoli, D., Dai, Y., Hardy, S. & de Lange, T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321–1325 (1999).

    Article  CAS  Google Scholar 

  17. Van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).

    Article  CAS  Google Scholar 

  18. Okamoto, K. et al. A two-step mechanism for TRF2-mediated chromosome-end protection. Nature 494, 502–505 (2013).

    Article  CAS  Google Scholar 

  19. Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop [see comments]. Cell 97, 503–514 (1999).

    Article  CAS  Google Scholar 

  20. Amiard, S. et al. A topological mechanism for TRF2-enhanced strand invasion. Nat. Struct. Mol. Biol. 14, 147–154 (2007).

    Article  CAS  Google Scholar 

  21. Nakanishi, K. et al. Expression of mRNAs for telomeric repeat binding factor (TRF)-1 and TRF2 in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Clin. Cancer Res. 9, 1105–1111 (2003).

    CAS  PubMed  Google Scholar 

  22. Begemann, S., Galimi, F. & Karlseder, J. Moderate expression of TRF2 in the hematopoietic system increases development of large cell blastic T-cell lymphomas. Aging 1, 122–130 (2009).

    Article  CAS  Google Scholar 

  23. Bellon, M. et al. Increased expression of telomere length regulating factors TRF1, TRF2 and TIN2 in patients with adult T-cell leukaemia. Int. J. Cancer 119, 2090–2097 (2006).

    Article  CAS  Google Scholar 

  24. Diehl, M. C. et al. Elevated TRF2 in advanced breast cancers with short telomeres. Breast Cancer Res. Treat. 127, 623–630 (2011).

    Article  CAS  Google Scholar 

  25. Hu, H., Zhang, Y., Zou, M., Yang, S. & Liang, X. Q. Expression of TRF1, TRF2, TIN2, TERT, KU70, and BRCA1 proteins is associated with telomere shortening and may contribute to multistage carcinogenesis of gastric cancer. J. Cancer Res. Clin. Oncol. 136, 1407–1414 (2010).

    Article  CAS  Google Scholar 

  26. Hsu, C. P., Ko, J. L., Shai, S. E. & Lee, L. W. Modulation of telomere shelterin by TRF1 [corrected] and TRF2 interacts with telomerase to maintain the telomere length in non-small cell lung cancer. Lung Cancer 58, 310–316 (2007).

    Article  Google Scholar 

  27. Ning, H. et al. TRF2 promotes multidrug resistance in gastric cancer cells. Cancer Biol. Ther. 5, 950–956 (2006).

    Article  CAS  Google Scholar 

  28. Oh, B. K., Kim, Y. J., Park, C. & Park, Y. N. Up-regulation of telomere-binding proteins, TRF1, TRF2, and TIN2 is related to telomere shortening during human multistep hepatocarcinogenesis. Am. J. Pathol. 166, 73–80 (2005).

    Article  CAS  Google Scholar 

  29. Dong, W. et al. Sp1 upregulates expression of TRF2 and TRF2 inhibition reduces tumorigenesis in human colorectal carcinoma cells. Cancer Biol. Ther. 8, 2166–2174 (2009).

    PubMed  Google Scholar 

  30. Dong, W., Wang, L., Chen, X., Sun, P. & Wu, Y. Upregulation and CpG island hypomethylation of the TRF2 gene in human gastric cancer. Dig. Dis. Sci. 55, 997–1003.

  31. Biroccio, A. et al. TRF2 inhibition triggers apoptosis and reduces tumourigenicity of human melanoma cells. Eur. J. Cancer 42, 1881–1888 (2006).

    Article  CAS  Google Scholar 

  32. Blanco, R., Munoz, P., Flores, J. M., Klatt, P. & Blasco, M. A. Telomerase abrogation dramatically accelerates TRF2-induced epithelial carcinogenesis. Genes Dev. 21, 206–220 (2007).

    Article  CAS  Google Scholar 

  33. Diala, I. et al. Telomere protection and TRF2 expression are enhanced by the canonical Wnt signalling pathway. EMBO Rep. 14, 356–363 (2013).

    Article  CAS  Google Scholar 

  34. Teo, H. et al. Telomere-independent Rap1 is an IKK adaptor and regulates NF-κB-dependent gene expression. Nat. Cell Biol. 12, 758–767 (2010).

    Article  CAS  Google Scholar 

  35. Takai, K. K., Hooper, S., Blackwood, S., Gandhi, R. & de Lange, T. In vivo stoichiometry of shelterin components. J. Biol. Chem. 285, 1457–1467 (2010).

    Article  CAS  Google Scholar 

  36. Ancrile, B., Lim, K. H. & Counter, C. M. Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev. 21, 1714–1719 (2007).

    Article  CAS  Google Scholar 

  37. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumour suppressor. PLoS Biol. 6, 2853–2868 (2008).

    Article  CAS  Google Scholar 

  38. Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008).

    Article  CAS  Google Scholar 

  39. Kozma, S. C. et al. The human c-Kirsten ras gene is activated by a novel mutation in codon 13 in the breast carcinoma cell line MDA-MB231. Nucleic Acids Res. 15, 5963–5971 (1987).

    Article  CAS  Google Scholar 

  40. Naldini, A. & Carraro, F. Role of inflammatory mediators in angiogenesis. Curr. Drug Targets Inflamm. Allergy 4, 3–8 (2005).

    Article  CAS  Google Scholar 

  41. Lau, A. et al. Suppression of HIV-1 infection by a small molecule inhibitor of the ATM kinase. Nat. Cell Biol. 7, 493–500 (2005).

    Article  Google Scholar 

  42. Denchi, E. L. & de Lange, T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448, 1068–1071 (2007).

    Article  CAS  Google Scholar 

  43. Gasser, S., Orsulic, S., Brown, E. J. & Raulet, D. H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190 (2005).

    Article  CAS  Google Scholar 

  44. Soriani, A. et al. ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113, 3503–3511 (2009).

    Article  CAS  Google Scholar 

  45. Brandt, C. S. et al. The B7 family member B7-H6 is a tumour cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med. 206, 1495–1503 (2009).

    Article  CAS  Google Scholar 

  46. Kuilman, T. & Peeper, D. S. Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer 9, 81–94 (2009).

    Article  CAS  Google Scholar 

  47. Simonet, T. et al. The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats. Cell Res. 21, 1028–1038 (2011).

    Article  CAS  Google Scholar 

  48. Ruiz-Herrera, A., Nergadze, S. G., Santagostino, M. & Giulotto, E. Telomeric repeats far from the ends: mechanisms of origin and role in evolution. Cytogenet. Genome Res. 122, 219–228 (2008).

    Article  CAS  Google Scholar 

  49. Bishop, J. R., Schuksz, M. & Esko, J. D. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 1030–1037 (2007).

    Article  CAS  Google Scholar 

  50. Hacker, U., Nybakken, K. & Perrimon, N. Heparan sulphate proteoglycans: the sweet side of development. Nat. Rev. Mol. Cell Biol. 6, 530–541 (2005).

    Article  Google Scholar 

  51. Feizi, T. Carbohydrate-mediated recognition systems in innate immunity. Immunol. Rev. 173, 79–88 (2000).

    Article  CAS  Google Scholar 

  52. Zhang, Y. W., Zhang, Z. X., Miao, Z. H. & Ding, J. The telomeric protein TRF2 is critical for the protection of A549 cells from both telomere erosion and DNA double-strand breaks driven by salvicine. Mol. Pharmacol. 73, 824–832 (2008).

    Article  CAS  Google Scholar 

  53. Yang, D. et al. Human telomeric proteins occupy selective interstitial sites. Cell Res. 21, 1013–1027 (2011).

    Article  Google Scholar 

  54. Marcand, S., Buck, S. W., Moretti, P., Gilson, E. & Shore, D. Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rap1 protein. Genes Dev. 10, 1297–1309 (1996).

    Article  CAS  Google Scholar 

  55. Maillet, L. et al. Evidence for silencing compartments within the yeast nucleus : a role for telomere proximity and Sir-protein concentration in silencer-mediated repression. Genes Dev. 10, 1796–1811 (1996).

    Article  CAS  Google Scholar 

  56. Hahn, W. C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  Google Scholar 

  57. Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992).

    Article  CAS  Google Scholar 

  58. Salmon, P. & Trono, D. Production and titration of lentiviral vectors. Curr. Protoc. Hum. Genet.http://dx.doi.org/10.1002/0471142905.hg1210s54 (2007).

  59. Leonetti, C. et al. Antitumour effect of c-myc antisense phosphorothioate oligodeoxynucleotides on human melanoma cells in vitro and and in mice. J. Natl. Cancer Inst. 88, 419–429 (1996).

    Article  CAS  Google Scholar 

  60. Spanopoulou, E. et al. Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes Dev. 8, 1030–1042 (1994).

    Article  CAS  Google Scholar 

  61. Schlemper, R. J. et al. The Vienna classification of gastrointestinal epithelial neoplasia. Gut 47, 251–255 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work done in the laboratory of E.G. was supported by La Ligue Nationale Contre Le Cancer (Équipe Labellisée), Institut National du Cancer (TELOFUN and TELOCHROM programme), ANR (INNATELO programme) and the European Union (FP7-Telomarker, Health-F2-2007-200950). The E.V. laboratory is supported by ANR (programme INNATELO) and the European Union (ERC advanced grant THINK). We thank L. Zitvogel (Institut Gustave Roussy, France) for providing the XMG1.2 clone, R. Weinberg (Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA) for providing the BJ-HELT cells, C. Delprat (University of Lyon, France) for Luminex analyses, J. Lingner (Ecole Polytechnique Fdrale de Lausanne, Switzerland) for providing the ATR shRNA and ATM shRNA plasmids, and V. Leopold (IRCAN, France) for providing the subcloning vectors. We are also grateful to C. D’Angelo and M. Scarsella for technical support. This work was performed using the microscopy (PICMI), cytometry (CYTOMED) and animal house facilities of IRCAN. The work done by the A.B. group was supported by grants from the Italian Association for Cancer Research (#11567 and #9979). A.B. was supported by the Short-Term Fellowship Programme of the EMBO. M.J.S. was supported by a National Health and Medical Research Council Australia Fellowship. J.C-V. was supported by a postdoctoral fellowship from La Ligue Nationale Contre Le Cancer.

Author information

Authors and Affiliations

Authors

Contributions

A.B. designed and interpreted most of the experiments and wrote the manuscript; J.C-V. designed, performed and interpreted syngenic mouse experiments, NK cell experiments and HS3ST4 experiments, and wrote the manuscript; A.A. designed, performed and interpreted the IL-6 experiments, contributed to several cell biology experiments and wrote the manuscript; S.P. performed and interpreted cell biology experiments; S.B. performed and interpreted TIF analyses and lentivirus production; J.Y. designed and performed NK cell experiments, and contributed to TIF analyses and lentivirus production; T.S., B.H. and A.M-B. performed and interpreted ChIP experiments; K.J. performed bioinformatic analyses; L.C. performed cytometry analyses; C.T.d.R. and D. Poncet performed gene expression analysis; E.S., A.R., P.Z. and R.G. performed cell biology and mouse experiments; L.S. and M.R. performed and analysed metaphase experiments; C.C. performed and interpreted NK cell experiments; T.K. and D. Peeper provided IL-6 tools and help in analysing the data; H.D. produced IL-12 antibodies; F.L. performed the pathological analyses on colon samples; J.M. provided mouse cell lines; E. Verhoeyen and F-L.C. contributed to lentiviral production; M.J.S. designed experiments, provided 1L-12 antibodies and edited the manuscript; A.L.V. provided cell lines and contributed to telomere analyses; V.P. and G.P. designed, performed and analysed the A375 experiments; J-Y.S. designed and interpreted the colon sample experiments, and wrote the manuscript; A.S. designed, performed and interpreted the pathological experiments with mouse tumours; C.L. designed, performed and interpreted most of the xenograft experiments; E. Vivier designed and interpreted the NK cell experiments, and wrote the manuscript; E.G. designed and coordinated all of the experiments, interpreted the results and wrote the manuscript.

Corresponding authors

Correspondence to Annamaria Biroccio or Eric Gilson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1470 kb)

Supplementary Table 1

Supplementary Information (XLSX 39 kb)

Supplementary Table 2

Supplementary Information (XLSX 44 kb)

Supplementary Table 3

Supplementary Information (XLSX 35 kb)

Supplementary Table 4

Supplementary Information (XLSX 58 kb)

Supplementary Table 5

Supplementary Information (XLSX 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biroccio, A., Cherfils-Vicini, J., Augereau, A. et al. TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells. Nat Cell Biol 15, 818–828 (2013). https://doi.org/10.1038/ncb2774

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2774

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer