Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insm1a-mediated gene repression is essential for the formation and differentiation of Müller glia-derived progenitors in the injured retina

Abstract

In zebrafish, retinal injury stimulates Müller glia (MG) reprograming, allowing them to generate multipotent progenitors that replace damaged cells and restore vision. Recent studies suggest that transcriptional repression may underlie these events. To identify transcriptional repressors, we compared the transcriptomes of MG and MG-derived progenitors and identified insm1a, a repressor exhibiting a biphasic pattern of expression that is essential for retina regeneration. Insm1a was found to suppress ascl1a and its own expression, and link injury-dependent ascl1a induction with the suppression of the Wnt inhibitor dickkopf (dkk), which is necessary for MG dedifferentiation. We also found that Insm1a was responsible for sculpting the zone of injury-responsive MG by suppressing h b-e g fa expression. Finally, we provide evidence that Insm1a stimulates progenitor cell-cycle exit by suppressing a genetic program driving progenitor proliferation. Our studies identify Insm1a as a key regulator of retina regeneration and provide a mechanistic understanding of how it contributes to multiple phases of this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Insm1a is necessary for MG dedifferentiation in the injured retina.
Figure 2: An Ascl1a–Insm1a regulatory loop.
Figure 3: Insm1a regulates dkk promoter activity.
Figure 4: Insm1a regulates the zone of injury-responsive MG.
Figure 5: Insm1a restricts the zone of dedifferentiating MG by suppressing h b-e g fa gene expression.
Figure 6: At 4–6 dpi Insm1a inhibits a genetic program driving cell proliferation and stimulates a genetic program driving cell-cycle exit.
Figure 7: Insm1a stimulates p57kip2 expression by suppressing bcl11 gene expression.
Figure 8: Insm1a knockdown transiently suppresses progenitor differentiation.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Bringmann, A. et al. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog. Retin. Eye Res. 28, 423–451 (2009).

    Article  CAS  Google Scholar 

  2. Sherpa, T. et al. Ganglion cell regeneration following whole-retina destruction in zebrafish. Dev. Neurobiol. 68, 166–181 (2008).

    Article  Google Scholar 

  3. Fausett, B. V. & Goldman, D. A role for α1 tubulin-expressing Müller glia in regeneration of the injured zebrafish retina. J. Neurosci. 26, 6303–6313 (2006).

    Article  CAS  Google Scholar 

  4. Ramachandran, R., Fausett, B. V. & Goldman, D. Ascl1a regulates Müller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat. Cell Biol. 12, 1101–1107 (2010).

    Article  CAS  Google Scholar 

  5. Ramachandran, R., Zhao, X. F. & Goldman, D. Ascl1a–Dkk–{β}-catenin signaling pathway is necessary and glycogen synthase kinase-3{β} inhibition is sufficient for zebrafish retina regeneration. Proc. Natl Acad. Sci. USA 108, 15858–15863 (2011).

    Article  CAS  Google Scholar 

  6. Thummel, R. et al. Pax6a and Pax6b are required at different points in neuronal progenitor cell proliferation during zebrafish photoreceptor regeneration. Exp. Eye Res. 90, 572–582 (2010).

    Article  CAS  Google Scholar 

  7. Thummel, R., Kassen, S. C., Montgomery, J. E., Enright, J. M. & Hyde, D. R. Inhibition of Müller glial cell division blocks regeneration of the light-damaged zebrafish retina. Dev. Neurobiol. 68, 392–408 (2008).

    Article  Google Scholar 

  8. Ramachandran, R., Reifler, A., Parent, J. M & Goldman, D. Conditional gene expression and lineage tracing of tuba1a expressing cells during zebrafish development and retina regeneration. J. Comp. Neurol. 518, 4196–4212 (2010).

    Article  CAS  Google Scholar 

  9. Fimbel, S. M., Montgomery, J. E., Burket, C. T. & Hyde, D. R. Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish. J. Neurosci. 27, 1712–1724 (2007).

    Article  CAS  Google Scholar 

  10. Karl, M. O. et al. Stimulation of neural regeneration in the mouse retina. Proc. Natl Acad. Sci. USA 105, 19508–19513 (2008).

    Article  CAS  Google Scholar 

  11. Osakada, F. et al. Wnt signaling promotes regeneration in the retina of adult mammals. J. Neurosci. 27, 4210–4219 (2007).

    Article  CAS  Google Scholar 

  12. Takeda, M. et al. α-aminoadipate induces progenitor cell properties of Müller glia in adult mice. Invest. Ophthalmol. Vis. Sci. 49, 1142–1150 (2008).

    Article  Google Scholar 

  13. Wan, J. et al. Preferential regeneration of photoreceptor from Müller glia after retinal degeneration in adult rat. Vision Res. 48, 223–234 (2008).

    Article  CAS  Google Scholar 

  14. Qin, Z., Barthel, L. K. & Raymond, P. A. Genetic evidence for shared mechanisms of epimorphic regeneration in zebrafish. Proc. Natl Acad. Sci. USA 106, 9310–9315 (2009).

    Article  CAS  Google Scholar 

  15. Kassen, S. C. et al. CNTF induces photoreceptor neuroprotection and Müller glial cell proliferation through two different signaling pathways in the adult zebrafish retina. Exp. Eye Res. 88, 1051–1064 (2009).

    Article  CAS  Google Scholar 

  16. Wan, J., Ramachandran, R. & Goldman, D. HB-EGF is necessary and sufficient for Müller glia dedifferentiation and retina regeneration. Dev. Cell 22, 334–347 (2012).

    Article  CAS  Google Scholar 

  17. Craig, S. E. et al. The zebrafish galectin Drgal1-l2 is expressed by proliferating Müller glia and photoreceptor progenitors and regulates the regeneration of rod photoreceptors. Invest. Ophthalmol. Vis. Sci. 51, 3244–3252 (2010).

    Article  Google Scholar 

  18. Hochmann, S. et al. Fgf signaling is required for photoreceptor maintenance in the adult zebrafish retina. PLoS One 7, e30365 (2012).

    Article  CAS  Google Scholar 

  19. Kassen, S. C. et al. Time course analysis of gene expression during light-induced photoreceptor cell death and regeneration in albino zebrafish. Dev. Neurobiol. 67, 1009–1031 (2007).

    Article  CAS  Google Scholar 

  20. Dyer, M. A. & Cepko, C. L. p27Kip1 and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations. J. Neurosci. 21, 4259–4271 (2001).

    Article  CAS  Google Scholar 

  21. Shkumatava, A. & Neumann, C. J. Shh directs cell-cycle exit by activating p57Kip2 in the zebrafish retina. EMBO Rep. 6, 563–569 (2005).

    Article  CAS  Google Scholar 

  22. Topark-Ngarm, A. et al. CTIP2 associates with the NuRD complex on the promoter of p57KIP2, a newly identified CTIP2 target gene. J. Biol. Chem. 281, 32272–32283 (2006).

    Article  CAS  Google Scholar 

  23. Lan, M. S., Russell, E. K., Lu, J., Johnson, B. E. & Notkins, A. L. IA-1, a new marker for neuroendocrine differentiation in human lung cancer cell lines. Cancer Res. 53, 4169–4171 (1993).

    CAS  PubMed  Google Scholar 

  24. Pedersen, N. et al. Transcriptional gene expression profiling of small cell lung cancer cells. Cancer Res. 63, 1943–1953 (2003).

    CAS  PubMed  Google Scholar 

  25. Farkas, L. M. et al. Insulinoma-associated 1 has a panneurogenic role and promotes the generation and expansion of basal progenitors in the developing mouse neocortex. Neuron 60, 40–55 (2008).

    Article  CAS  Google Scholar 

  26. Rosenbaum, J. N., Duggan, A. & Garcia-Anoveros, J. Insm1 promotes the transition of olfactory progenitors from apical and proliferative to basal, terminally dividing and neuronogenic. Neural Dev. 6, 6 (2011).

    Article  Google Scholar 

  27. Jacob, J. et al. Insm1 (IA-1) is an essential component of the regulatory network that specifies monoaminergic neuronal phenotypes in the vertebrate hindbrain. Development 136, 2477–2485 (2009).

    Article  CAS  Google Scholar 

  28. Wildner, H., Gierl, M. S., Strehle, M., Pla, P. & Birchmeier, C. Insm1 (IA-1) is a crucial component of the transcriptional network that controls differentiation of the sympatho-adrenal lineage. Development 135, 473–481 (2008).

    Article  CAS  Google Scholar 

  29. Lukowski, C. M., Ritzel, R. G. & Waskiewicz, A. J. Expression of two insm1-like genes in the developing zebrafish nervous system. Gene expression patterns: GEP 6, 711–718 (2006).

    Article  CAS  Google Scholar 

  30. Morris, A. C., Forbes-Osborne, M. A., Pillai, L. S. & Fadool, J. M. Microarray analysis of XOPS-mCFP zebrafish retina identifies genes associated with rod photoreceptor degeneration and regeneration. Invest. Ophthalmol. Vis. Sci. 52, 2255–2266 (2011).

    Article  CAS  Google Scholar 

  31. Fausett, B. V., Gumerson, J. D. & Goldman, D. The proneural basic helix-loop-helix gene ascl1a is required for retina regeneration. J. Neurosci. 28, 1109–1117 (2008).

    Article  CAS  Google Scholar 

  32. Powell, C., Elsaeidi, F. & Goldman, D. Injury-dependent Müller glia and ganglion cell reprogramming during tissue regeneration requires Apobec2a and Apobec2b. J. Neurosci. 32, 1096–1109 (2012).

    Article  CAS  Google Scholar 

  33. Osada, H. et al. Roles of achaete-scute homologue 1 in DKK1 and E-cadherin repression and neuroendocrine differentiation in lung cancer. Cancer Res. 68, 1647–1655 (2008).

    Article  CAS  Google Scholar 

  34. Johansson, T. A., Westin, G. & Skogseid, B. Identification of Achaete-scute complex-like 1 (ASCL1) target genes and evaluation of DKK1 and TPH1 expression in pancreatic endocrine tumours. BMC cancer 9, 321 (2009).

    Article  Google Scholar 

  35. Lowe, A. W. et al. Gene expression patterns in pancreatic tumors, cells and tissues. PLoS One 2, e323 (2007).

    Article  Google Scholar 

  36. Tiana, G., Krishna, S., Pigolotti, S., Jensen, M. H. & Sneppen, K. Oscillations and temporal signalling in cells. Phys. Biol. 4, R1–17 (2007).

    Article  Google Scholar 

  37. Momiji, H. & Monk, N. A. Oscillatory expression of Hes family transcription factors: insights from mathematical modelling. Adv. Exp. Med. Biol. 641, 72–87 (2008).

    Article  CAS  Google Scholar 

  38. Zhang, T., Liu, W. D., Saunee, N. A., Breslin, M. B. & Lan, M. S. Zinc finger transcription factor INSM1 interrupts cyclin D1 and CDK4 binding and induces cell cycle arrest. J. Biol. Chem. 284, 5574–5581 (2009).

    Article  CAS  Google Scholar 

  39. Dyer, M. A. & Cepko, C. L. p57(Kip2) regulates progenitor cell proliferation and amacrine interneuron development in the mouse retina. Development 127, 3593–3605 (2000).

    CAS  PubMed  Google Scholar 

  40. Dyer, M. A. & Cepko, C. L. Control of Müller glial cell proliferation and activation following retinal injury. Nature Neurosci. 3, 873–880 (2000).

    Article  CAS  Google Scholar 

  41. Stoick-Cooper, C. L. et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 134, 479–489 (2007).

    Article  CAS  Google Scholar 

  42. Lindeman, L. C., Vogt-Kielland, L. T., Alestrom, P. & Collas, P. Fish’n ChIPs: chromatin immunoprecipitation in the zebrafish embryo. Methods Mol. Biol. 567, 75–86 (2009).

    Article  CAS  Google Scholar 

  43. Senut, M. C., Gulati-Leekha, A. & Goldman, D. An element in the α1-tubulin promoter is necessary for retinal expression during optic nerve regeneration but not after eye injury in the adult zebrafish. J. Neurosci. 24, 7663–7673 (2004).

    Article  CAS  Google Scholar 

  44. Barthel, L. K. & Raymond, P.A. In situ hybridization studies of retinal neurons. Methods Enzymol. 316, 579–590 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by NEI grant RO1 EY 018132 from the NIH. We thank D. Hyde (University of Notre Dame, USA) for gfap:gfp transgenic fish; R. Moon (University of Washington, USA) for hsp70:dkk1b-gfp transgenic fish; the University of Michigan Flow Cytometry Core for cell sorting; A. Dombrowski (Wayne State, USA) for microarray screen; R. Thompson (University of Michigan, USA) for assistance with microarray data organization; M. Uhler and D. Turner (University of Michigan, USA) for providing the pEL and pCS2 vectors, respectively; J. Beals (University of Michigan, USA) for help with confocal microscopy; the Goldman laboratory for helpful comments and suggestions during the course of this research; and R. Karr for fish care.

Author information

Authors and Affiliations

Authors

Contributions

D.G. and R.R. conceived the study and designed experiments. R.R. and X-F.Z. performed the experiments. R.R., X-F.Z. and D.G. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Daniel Goldman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2548 kb)

Supplementary Table 1

(XLSX 11 kb)

Supplementary Table 2

(XLSX 12 kb)

Supplementary Table 3

(XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramachandran, R., Zhao, XF. & Goldman, D. Insm1a-mediated gene repression is essential for the formation and differentiation of Müller glia-derived progenitors in the injured retina. Nat Cell Biol 14, 1013–1023 (2012). https://doi.org/10.1038/ncb2586

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2586

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing