Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity

Abstract

Polarity is key to the function of eukaryotic cells. On the establishment of a polarity axis, cells can vectorially target secretion, generating an asymmetric distribution of plasma membrane proteins. From Saccharomyces cerevisiae to mammals, the small GTPase Cdc42 is a pivotal regulator of polarity. We used a fluorescent probe to visualize the distribution of phosphatidylserine in live S. cerevisiae. Remarkably, phosphatidylserine was polarized in the plasma membrane, accumulating in bud necks, the bud cortex and the tips of mating projections. Polarization required vectorial delivery of phosphatidylserine-containing secretory vesicles, and phosphatidylserine was largely excluded from endocytic vesicles, contributing to its polarized retention. Mutants lacking phosphatidylserine synthase had impaired polarization of the Cdc42 complex, leading to a delay in bud emergence, and defective mating. The addition of lysophosphatidylserine resulted in resynthesis and polarization of phosphatidylserine, as well as repolarization of Cdc42. The results indicate that phosphatidylserine—and presumably its polarization—are required for optimal Cdc42 targeting and activation during cell division and mating.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: phosphatidylserine distribution in budding yeast.
Figure 2: Secretion is required for the polarized distribution of phosphatidylserine.
Figure 3: phosphatidylserine is excluded from newly formed endocytic vesicles and endocytic organelles.
Figure 4: phosphatidylserine is required for optimal Cdc42 location, activity and cell polarity.
Figure 5: Effects of phosphatidylserine repletion and phosphatidylethanolamine depletion on Cdc42 localization.

Similar content being viewed by others

References

  1. Vance, J. E. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J. Lipid Res. 49, 1377–1387 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell. Biol. 9, 112–124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cottrell, S. F., Getz, G. S. & Rabinowitz, M. Phospholipid accumulation during the cell cycle in synchronous cultures of the yeast, Saccharomyces cerevisiae. J. Biol. Chem. 256, 10973–10978 (1981).

    CAS  PubMed  Google Scholar 

  4. Yeung, T. et al. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319, 210–213 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Norden, C. et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125, 85–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Whiteway, M. et al. The STE4 and STE18 genes of yeast encode potential β and γ subunits of the mating factor receptor-coupled G protein. Cell 56, 467–477 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Wiget, P., Shimada, Y., Butty, A-C., Bi, E. & Peter, M. Site-specific regulation of the GEF Cdc24p by the scaffold protein Far1p during yeast mating. EMBO J. 23, 1063–1074 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garrenton, L. S., Stefan, C. J., McMurray, M. A., Emr, S. D. & Thorner, J. Pheromone-induced anisotropy in yeast plasma membrane phosphatidylinositol-4,5-bisphosphate distribution is required for MAPK signaling. Proc. Natl Acad. Sci. USA 107, 11805–11810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205–215 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Protopopov, V., Govindan, B., Novick, P. & Gerst, J. E. Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Cell 74, 855–861 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Lewis, M. J., Nichols, B. J., Prescianotto-Baschong, C., Riezman, H. & Pelham, H. R. Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Mol. Biol. Cell 11, 23–38 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vinnakota, K. C., Mitchell, D. A., Deschenes, R. J., Wakatsuki, T. & Beard, D. A. Analysis of the diffusion of Ras2 in Saccharomyces cerevisiae using fluorescence recovery after photobleaching. Phys. Biol. 7, 026011 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Faty, M., Fink, M. & Barral, Y. Septins: a ring to part mother and daughter. Curr. Genet. 41, 123–131 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Sata, M., Donaldson, J. G., Moss, J. & Vaughan, M. Brefeldin A-inhibited guanine nucleotide-exchange activity of Sec7 domain from yeast Sec7 with yeast and mammalian ADP ribosylation factors. Proc. Natl Acad. Sci. USA 95, 4204–4208 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Achstetter, T., Franzusoff, A., Field, C. & Schekman, R. SEC7 encodes an unusual, high molecular weight protein required for membrane traffic from the yeast Golgi apparatus. J. Biol. Chem. 263, 11711–11717 (1988).

    CAS  PubMed  Google Scholar 

  16. Gurunathan, S., David, D. & Gerst, J. E. Dynamin and clathrin are required for the biogenesis of a distinct class of secretory vesicles in yeast. EMBO J. 21, 602–614 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harsay, E. & Schekman, R. A subset of yeast vacuolar protein sorting mutants is blocked in one branch of the exocytic pathway. J. Cell Biol. 156, 271–285 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. He, B. et al. Exo70p mediates the secretion of specific exocytic vesicles at early stages of the cell cycle for polarized cell growth. J. Cell Biol. 176, 771–777 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zinser, E. et al. Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J. Bacteriol. 173, 2026–2034 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. J. Cell Sci. 113 (Pt 4), 571–585 (2000).

    CAS  PubMed  Google Scholar 

  21. Kaksonen, M., Sun, Y. & Drubin, D. G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115, 475–487 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Vida, T. A. & Emr, S. D. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 128, 779–792 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Burd, C. G. & Emr, S. D. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell 2, 157–162 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Katzmann, D. J., Stefan, C. J., Babst, M. & Emr, S. D. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J. Cell Biol. 162, 413–423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Efe, J. A., Botelho, R. J. & Emr, S. D. Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate. Mol. Biol. Cell 18, 4232–4244 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Natarajan, P., Wang, J., Hua, Z. & Graham, T. R. Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function. Proc. Natl Acad. Sci. USA 101, 10614–10619 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cross, F. R. Cell cycle arrest caused by CLN gene deficiency in Saccharomyces cerevisiae resembles START-I arrest and is independent of the mating-pheromone signalling pathway. Mol. Cell. Biol. 10, 6482–6490 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ziman, M. et al. Subcellular localization of Cdc42p, a Saccharomyces cerevisiae GTP-binding protein involved in the control of cell polarity. Mol. Biol. Cell 4, 1307–1316 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Richman, T. J., Sawyer, M. M. & Johnson, D. I. Saccharomyces cerevisiae Cdc42p localizes to cellular membranes and clusters at sites of polarized growth. Eukaryot. Cell 1, 458–468 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chenevert, J., Corrado, K., Bender, A., Pringle, J. & Herskowitz, I. A yeast gene (BEM1) necessary for cell polarization whose product contains two SH3 domains. Nature 356, 77–79 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Bender, A. & Pringle, J. R. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 1295–1305 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Toenjes, K. A., Sawyer, M. M. & Johnson, D. I. The guanine-nucleotide-exchange factor Cdc24p is targeted to the nucleus and polarized growth sites. Curr. Biol. 9, 1183–1186 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Riekhof, W. R. et al. Lysophosphatidylcholine metabolism in Saccharomyces cerevisiae: the role of P-type ATPases in transport and a broad specificity acyltransferase in acylation. J. Biol. Chem. 282, 36853–36861 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Trotter, P. J., Pedretti, J. & Voelker, D. R. Phosphatidylserine decarboxylase from Saccharomyces cerevisiae. Isolation of mutants, cloning of the gene, and creation of a null allele. J. Biol. Chem. 268, 21416–21424 (1993).

    CAS  PubMed  Google Scholar 

  35. Wang, F. et al. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat. Cell Biol. 4, 513–518 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Kölsch, V., Charest, P. G. & Firtel, R. A. The regulation of cell motility and chemotaxis by phospholipid signaling. J. Cell Sci. 121, 551–559 (2008).

    Article  PubMed  Google Scholar 

  37. Mitra, P. et al. A novel phosphatidylinositol(3,4,5)P3 pathway in fission yeast. J. Cell Biol. 166, 205–211 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS  PubMed  Google Scholar 

  39. Hermansson, M., Uphoff, A., Käkelä, R. & Somerharju, P. Automated quantitative analysis of complex lipidomes by liquid chromatography/mass spectrometry. Anal. Chem. 77, 2166–2175 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Koivusalo, M., Haimi, P., Heikinheimo, L., Kostiainen, R. & Somerharju, P. Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J. Lipid Res. 42, 663–672 (2001).

    PubMed  Google Scholar 

  41. Haimi, P., Uphoff, A., Hermansson, M. & Somerharju, P. Software tools for analysis of mass spectrometric lipidome data. Anal. Chem. 78, 8324–8331 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. McMaster (Dalhousie University, Halifax, Canada), S. Emr (Cornell University, Ithaca, USA), H. Pelham (MRC-LMB, Cambridge, UK), T. Levine (UCL, London, UK), D. Johnson (University of Vermont, Burlington, USA), K. Tanaka (Hokkaido University, Hokkaido, Japan), R. Collins (Cornell University, Ithaca, USA), E. Bi (UPENN, Philadelphia, USA), R. Li (Stowers Institute for Medical Research, Kansas City, USA), F. Cross (Rockefeller University, New York, USA), W. Guo (UPENN, Philadelphia, USA), C. Burd (UPENN, Philadelphia, USA), B. Andrews (University of Toronto, Toronto, Canada) and C. Boone (University of Toronto, Toronto, Canada) for providing strains and plasmids. We also thank C. McMaster for his comments on the manuscript. This work was supported by Canadian Institutes of Health Research (CIHR) grants 7075 and MOP4665. G.D.F. is the recipient of a CIHR postdoctoral fellowship. S.G. is the present holder of the Pitblado Chair in Cell Biology.

Author information

Authors and Affiliations

Authors

Contributions

G.D.F. and S.G. conceived the project and designed experiments; G.D.F. and M.H. carried out experiments; G.D.F., M.H., P.S. and S.G. analysed the data; G.D.F. and S.G. wrote the manuscript.

Corresponding author

Correspondence to Sergio Grinstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 388 kb)

Supplementary Movie 1

Supplementary Information (MOV 1396 kb)

Supplementary Movie 2

Supplementary Information (MOV 149 kb)

Supplementary Table 1

Supplementary Information (XLSX 45 kb)

Supplementary Table 2

Supplementary Information (XLSX 33 kb)

Supplementary Table 3

Supplementary Information (XLSX 32 kb)

Supplementary Spreadsheet 1

Supplementary Information (XLS 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fairn, G., Hermansson, M., Somerharju, P. et al. Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity. Nat Cell Biol 13, 1424–1430 (2011). https://doi.org/10.1038/ncb2351

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2351

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing