Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The N-end rule pathway is mediated by a complex of the RING-type Ubr1 and HECT-type Ufd4 ubiquitin ligases

Abstract

Substrates of the N-end rule pathway are recognized by the Ubr1 E3 ubiquitin ligase through their destabilizing amino-terminal residues. Our previous work showed that the Ubr1 E3 and the Ufd4 E3 together target an internal degradation signal (degron) of the Mgt1 DNA repair protein. Ufd4 is an E3 enzyme of the ubiquitin-fusion degradation (UFD) pathway that recognizes an N-terminal ubiquitin moiety. Here we show that the RING-type Ubr1 E3 and the HECT-type Ufd4 E3 interact, both physically and functionally. Although Ubr1 can recognize and polyubiquitylate an N-end rule substrate in the absence of Ufd4, the Ubr1–Ufd4 complex is more processive in that it produces a longer substrate-linked polyubiquitin chain. Conversely, Ubr1 can function as a polyubiquitylation-enhancing component of the Ubr1–Ufd4 complex in its targeting of UFD substrates. We also found that Ubr1 can recognize the N-terminal ubiquitin moiety. These and related advances unify two proteolytic systems that have been studied separately for two decades.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Arg/N-end rule and UFD pathways.
Figure 2: Ubiquitylation of Mgt1 by Ubr1–Ufd4.
Figure 3: Physical interaction between Ubr1 and Ufd4.
Figure 4: Enhancement of ubiquitylation and degradation of Arg/N-end rule substrates by Ufd4.
Figure 5: Ufd4 augments the Arg/N-end rule pathway.
Figure 6: Recognition and synergistic polyubiquitylation of UFD substrates by Ufd4 and Ubr1.

Similar content being viewed by others

References

  1. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    Article  CAS  Google Scholar 

  2. Varshavsky, A. The N-end rule: functions, mysteries, uses. Proc. Natl Acad. Sci. USA 93, 12142–12149 (1996).

    Article  CAS  Google Scholar 

  3. Varshavsky, A. Discovery of cellular regulation by protein degradation. J. Biol. Chem. 283, 34469–34489 (2008).

    Article  CAS  Google Scholar 

  4. Ravid, T. & Hochstrasser, M. Diversity of degradation signals in the ubiquitin–proteasome system. Nature Rev. Mol. Cell Biol. 9, 679–689 (2008).

    Article  CAS  Google Scholar 

  5. Turner, G. C., Du, F. & Varshavsky, A. Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway. Nature 405, 579–583 (2000).

    Article  CAS  Google Scholar 

  6. Rao, H., Uhlmann, F., Nasmyth, K. & Varshavsky, A. Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410, 955–960 (2001).

    Article  CAS  Google Scholar 

  7. Hu, R.-G. et al. The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature 437, 981–986 (2005).

    Article  CAS  Google Scholar 

  8. Tasaki, T. & Kwon, Y. T. The mammalian N-end rule pathway: new insights into its components and physiological roles. Trends Biochem. Sci. 32, 520–528 (2007).

    Article  CAS  Google Scholar 

  9. Mogk, A., Schmidt, R. & Bukau, B. The N-end rule pathway of regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol. 17, 165–172 (2007).

    Article  CAS  Google Scholar 

  10. Hu, R.-G., Wang, H., Xia, Z. & Varshavsky, A. The N-end rule pathway is a sensor of heme. Proc. Natl Acad. Sci. USA 105, 76–81 (2008).

    Article  CAS  Google Scholar 

  11. Hwang, C.-S. & Varshavsky, A. Regulation of peptide import through phosphorylation of Ubr1, the ubiquitin ligase of the N-end rule pathway. Proc. Natl Acad. Sci. USA 105, 19188–19193 (2008).

    Article  CAS  Google Scholar 

  12. Hwang, C.-S., Shemorry, A. & Varshavsky, A. Two proteolytic pathways regulate DNA repair by co-targeting the Mgt1 alkyguanine transferase. Proc. Natl Acad. Sci. USA 106, 2142–2147 (2009).

    Article  CAS  Google Scholar 

  13. Schmidt, R., Zahn, R., Bukau, B. & Mogk, A. ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway. Mol. Microbiol. 72, 506–517 (2009).

    Article  CAS  Google Scholar 

  14. Román-Hernández, G., Grant, R. A., Sauer, R. T. & Baker, T. A. Molecular basis of substrate selection by the N-end rule adaptor protein ClpS. Proc. Natl Acad. Sci. USA 106, 8888–8893 (2009).

    Article  Google Scholar 

  15. Wang, H., Piatkov, K. I., Brower, C. S. & Varshavsky, A. Glutamine-specific N-terminal amidase, a component of the N-end rule pathway. Mol. Cell 34, 686–695 (2009).

    Article  CAS  Google Scholar 

  16. Brower, C. S. & Varshavsky, A. Ablation of arginylation in the mouse N-end rule pathway: loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations. PLoS ONE 4, e7757 (2009).

    Article  Google Scholar 

  17. Tasaki, T. et al. The substrate recognition domains of the N-end rule pathway. J. Biol. Chem. 284, 1884–1895 (2009).

    Article  CAS  Google Scholar 

  18. Hwang, C.-S., Shemorry, A. & Varshavsky, A. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973–977 (2010).

    Article  CAS  Google Scholar 

  19. Liu, F. & Walters, K. J. Multitasking with ubiquitin through multivalent interactions. Trends Biochem. Sci. 35, 352–360 (2010).

    Article  CAS  Google Scholar 

  20. Hochstrasser, M. Origin and function of ubiquitin-like proteins. Nature 458, 422–429 (2009).

    Article  CAS  Google Scholar 

  21. Dye, B. T. & Schulman, B. A. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu. Rev. Biophys. Biomol. Struct. 36, 131–150 (2007).

    Article  CAS  Google Scholar 

  22. Du, F., Navarro-Garcia, F., Xia, Z., Tasaki, T. & Varshavsky, A. Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain. Proc. Natl Acad. Sci. USA 99, 14110–14115 (2002).

    Article  CAS  Google Scholar 

  23. Xia, Z. et al. Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway. J. Biol. Chem. 283, 24011–24028 (2008).

    Article  CAS  Google Scholar 

  24. Choi, W. S. et al. Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nature Struct. Mol. Biol. 17, 1175–1182 (2010).

    Article  CAS  Google Scholar 

  25. Matta-Camacho, E., Kozlov, G., Li, F. F. & Gehring, K. Structural basis of substrate recognition and specificity in the N-end rule pathway. Nature Struct. Mol. Biol. 17, 1182–1188 (2010).

    Article  CAS  Google Scholar 

  26. Sriram, S. M. & Kwon, Y. T. The structural basis of N-end rule recognition. Nature Struct. Mol. Biol. 17, 1164–1165 (2010).

    Article  CAS  Google Scholar 

  27. Xia, Z., Turner, G. C., Hwang, C.-S., Byrd, C. & Varshavsky, A. Amino acids induce peptide uptake via accelerated degradation of CUP9, the transcriptional repressor of the PTR2 peptide transporter. J. Biol. Chem. 283, 28958–28968 (2008).

    Article  CAS  Google Scholar 

  28. Heck, J. W., Cheung, S. K. & Hampton, R. Y. Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc. Natl Acad. Sci. USA 107, 1106–1111 (2010).

    Article  CAS  Google Scholar 

  29. Eisele, F. & Wolf, D. H. Degradation of misfolded proteins in the cytoplasm by the ubiquitin ligase Ubr1. FEBS Lett. 582, 4143–4146 (2008).

    Article  CAS  Google Scholar 

  30. Prasad, R., Kawaguchi, S. & Ng, D. T. W. A nucleus-based quality control mechanism for cytosolic proteins. Mol. Biol. Cell 21, 2117–2127 (2010).

    Article  CAS  Google Scholar 

  31. Nillegoda, N. B. et al. Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins. Mol. Biol. Cell 21, 2102–2116 (2010).

    Article  CAS  Google Scholar 

  32. Kwon, Y. T. et al. An essential role of N-terminal arginylation in cardiovascular development. Science 297, 96–99 (2002).

    Article  CAS  Google Scholar 

  33. Cai, H., Kauffman, S., Naider, F. & Becker, J. M. Genomewide screen reveals a wide regulatory network for di/tripeptide utilization in Saccharomyces cerevisiae. Genetics 172, 1459–1476 (2006).

    Article  CAS  Google Scholar 

  34. Graciet, E. & Wellmer, F. The plant N-end rule pathway: structure and functions. Trends Plant Sci. 15, 447–453 (2010).

    Article  CAS  Google Scholar 

  35. Kurosaka, S. et al. Arginylation-dependent neural crest cell migration is essential for mouse development. PLoS Genet. 6, e1000878 (2010).

    Article  Google Scholar 

  36. Karakozova, M. et al. Arginylation of β-actin regulates actin cytoskeleton and cell motility. Science 313, 192–196 (2006).

    Article  CAS  Google Scholar 

  37. Caprio, M. A., Sambrooks, C. L., Durand, E. S. & Hallak, M. The arginylation-dependent association of calreticulin with stress granules is regulated by calcium. Biochem. J. 429, 63–72 (2010).

    Article  Google Scholar 

  38. Johnson, E. S., Ma, P. C., Ota, I. M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456 (1995).

    Article  CAS  Google Scholar 

  39. Ravid, T. & Hochstrasser, M. Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nature Cell Biol. 9, 422–427 (2007).

    Article  CAS  Google Scholar 

  40. Ju, D., Wang, X., Xu, H. & Xie, Y. The armadillo repeats of the Ufd4 ubiquitin ligase recognize ubiquitin-fusion proteins. FEBS Lett. 581, 265–270 (2007).

    Article  CAS  Google Scholar 

  41. Xie, Y. & Varshavsky, A. Physical association of ubiquitin ligases and the 26S proteasome. Proc. Natl Acad. Sci. USA 97, 2497–2502 (2000).

    Article  CAS  Google Scholar 

  42. Xie, Y. & Varshavsky, A. UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis. Nature Cell Biol. 4, 1003–1007 (2002).

    Article  CAS  Google Scholar 

  43. Kee, Y. & Huibregtse, J. M. Regulation of catalytic activities of HECT ubiquitin ligases. Biochem. Biophys. Res. Commun. 354, 329–333 (2007).

    Article  CAS  Google Scholar 

  44. Johnson, E. S., Bartel, B., W. & Varshavsky, A. Ubiquitin as a degradation signal. EMBO J. 11, 497–505 (1992).

    Article  CAS  Google Scholar 

  45. Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635–644 (1999).

    Article  CAS  Google Scholar 

  46. Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009).

    Article  CAS  Google Scholar 

  47. Hochstrasser, M. Lingering mysteries of ubiquitin-chain assembly. Cell 124, 27–34 (2006).

    Article  Google Scholar 

  48. Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576–1583 (1989).

    Article  CAS  Google Scholar 

  49. Rodrigo-Brenni, M. C. & Morgan, D. O. Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell 130, 127–139 (2007).

    Article  CAS  Google Scholar 

  50. Hoppe, T. Multiubiquitylation by E4 enzymes: 'one size' doesn't fit all. Trends Biochem. Sci. 30, 183–187 (2005).

    Article  CAS  Google Scholar 

  51. Scott, D. C. et al. A dual mechanism for Rub1 ligation to Cdc53. Mol. Cell 39, 784–796 (2010).

    Article  CAS  Google Scholar 

  52. Johnsson, N. & Varshavsky, A. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl Acad. Sci. USA 91, 10340–10344 (1994).

    Article  CAS  Google Scholar 

  53. Möckli, N. et al. Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins. BioTechniques 42, 725–729 (2007).

    Article  Google Scholar 

  54. Varshavsky, A. Ubiquitin fusion technique and related methods . Methods Enzymol. 399, 777–799 (2005).

    Article  CAS  Google Scholar 

  55. Catanzariti, A.-M., Soboleva, T. A., Jans, D. A., Board, P. G. & Baker, R. T. An efficient system for high-level expression and easy purification of authentic recombinant proteins. Protein Sci. 13, 1331–1339 (2004).

    Article  CAS  Google Scholar 

  56. Saeki, Y., Isono, E. & Toh, E. A. Preparation of ubiquitinated substrates by the PY motif-insertion method for monitoring 26S proteasome activity. Methods Enzymol. 399, 215–227 (2005).

    Article  CAS  Google Scholar 

  57. Turner, G. C. & Varshavsky, A. Detecting and measuring cotranslational protein degradation in vivo. Science 289, 2117–2120 (2000).

    Article  CAS  Google Scholar 

  58. Liu, C. et al. Ubiquitin chain elongation enzyme Ufd2 regulates a subset of Doa10 substrates. J. Biol. Chem. 285, 10265–10272 (2010).

    Article  CAS  Google Scholar 

  59. Tu, D., Li, W., Ye, Y. & Brunger, A. T. Structure and function of the yeast U-box-containing ubiquitin ligase Ufd2p. Proc. Natl Acad. Sci. USA 104, 15599–15606 (2007).

    Article  CAS  Google Scholar 

  60. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  Google Scholar 

  61. Courbard, J.-R. et al. Interaction between two ubiquitin-protein isopeptide ligases of different classes, CBLC and AIP4/ITCH. J. Biol. Chem. 277, 45267–45275 (2002).

    Article  CAS  Google Scholar 

  62. Chen, C. et al. The WW domain-containing E3 ubiquitin protein ligase 1 upregulates ErbB2 and EGFR through RING finger protein 11. Oncogene 27, 6845–6855 (2008).

    Article  CAS  Google Scholar 

  63. Magnifico, A. et al. WW domain HECT E3s target Cbl RING finger E3s for proteasomal degradation. J. Biol. Chem. 278, 43169–43177 (2003).

    Article  CAS  Google Scholar 

  64. Zaaroor-Regev, D. et al. Regulation of the polycomb protein Ring1B by self-ubiquitination or by E6-AP may have implications to the pathogenesis of Angelman syndrome. Proc. Natl Acad. Sci. USA 107, 6788–6793 (2010).

    Article  CAS  Google Scholar 

  65. Varshavsky, A. Spalog and sequelog: neutral terms for spatial and sequence similarity. Curr. Biol. 14, R181–R183 (2004).

    Article  CAS  Google Scholar 

  66. Park, Y., Yoon, S. K. & Yoon, J. B. The HECT domain of TRIP12 ubiquitinates substrates of the ubiquitin fusion degradation pathway. J. Biol. Chem. 284, 1540–1549 (2009).

    Article  CAS  Google Scholar 

  67. Gardner, R. G., Nelson, Z. W. & Gottschling, D. E. Degradation-mediated protein quality control in the nucleus. Cell 120, 803–815 (2005).

    Article  CAS  Google Scholar 

  68. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  Google Scholar 

  69. Ausubel, F. M. et al. Current Protocols in Molecular Biology (Wiley-Interscience, 2006).

    Google Scholar 

  70. Kushnirov, V. V. Rapid and reliable protein extraction from yeast. Yeast 16, 857–860 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Jentsch and A. Toh-e for strains and plasmids; the present and former members of the Varshavsky laboratory, particularly J. Sheng and K. Piatkov, for gifts of plasmids and strains; and O. Batygin for technical assistance. This work was supported by National Institutes of Health grants GM031530, DK039520 and GM085371 (A.V.), and also by grants from the March of Dimes Foundation and the Caltech–City of Hope Biomedical Initiative (A.V.).

Author information

Authors and Affiliations

Authors

Contributions

C.-S.H, A.S., D.A. and A.V. designed experiments. C.-S.H. and A.S. performed the experiments. C.-S.H, A.S. and A.V. wrote the manuscript.

Corresponding author

Correspondence to Alexander Varshavsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 677 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, CS., Shemorry, A., Auerbach, D. et al. The N-end rule pathway is mediated by a complex of the RING-type Ubr1 and HECT-type Ufd4 ubiquitin ligases. Nat Cell Biol 12, 1177–1185 (2010). https://doi.org/10.1038/ncb2121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing