Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting

Abstract

Sprouting angiogenesis requires the coordinated behaviour of endothelial cells, regulated by Notch and vascular endothelial growth factor receptor (VEGFR) signalling. Here, we use computational modelling and genetic mosaic sprouting assays in vitro and in vivo to investigate the regulation and dynamics of endothelial cells during tip cell selection. We find that endothelial cells compete for the tip cell position through relative levels of Vegfr1 and Vegfr2, demonstrating a biological role for differential Vegfr regulation in individual endothelial cells. Differential Vegfr levels affect tip selection only in the presence of a functional Notch system by modulating the expression of the ligand Dll4. Time-lapse microscopy imaging of mosaic sprouts identifies dynamic position shuffling of tip and stalk cells in vitro and in vivo, indicating that the VEGFR–Dll4–Notch signalling circuit is constantly re-evaluated as cells meet new neighbours. The regular exchange of the leading tip cell raises novel implications for the concept of guided angiogenic sprouting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VEGFR levels in mosaic-tip-cell selection in silico, in vitro and in vivo.
Figure 2: Dll4 and Notch signalling in competition.
Figure 3: Notch regulates Dll4, VEGFR2 and VEGFR1 in sprouting embryoid bodies.
Figure 4: VEGFR-mediated Dll4 expression dictates tip/stalk phenotype in a cell–cell dependent manner.
Figure 5: Dynamic observations of tip cell shuffling in sprouting angiogenesis.
Figure 6: Computational modelling suggests regulation of cell shuffling by Notch.
Figure 7: Dynamic position shuffling in vivo.

Similar content being viewed by others

References

  1. Johnston, L. A. Competitive interactions between cells: death, growth, and geography. Science 324, 1679–1682 (2009).

    Article  CAS  Google Scholar 

  2. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    Article  CAS  Google Scholar 

  3. Ghabrial, A. S. & Krasnow, M. A. Social interactions among epithelial cells during tracheal branching morphogenesis. Nature 441, 746–749 (2006).

    Article  CAS  Google Scholar 

  4. Affolter, M. & Caussinus, E. Tracheal branching morphogenesis in Drosophila: new insights into cell behaviour and organ architecture. Development 135, 2055–2064 (2008).

    Article  CAS  Google Scholar 

  5. Roca, C. & Adams, R. H. Regulation of vascular morphogenesis by Notch signaling. Genes Dev. 21, 2511–2524 (2007).

    Article  CAS  Google Scholar 

  6. Ruhrberg, C. et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 16, 2684–2698 (2002).

    Article  CAS  Google Scholar 

  7. Olsson, A. K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling - in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359–371 (2006).

    Article  CAS  Google Scholar 

  8. Hiratsuka, S., Minowa, O., Kuno, J., Noda, T. & Shibuya, M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl Acad. Sci. USA 95, 9349–9354 (1998).

    Article  CAS  Google Scholar 

  9. Park, J. E., Chen, H. H., Winer, J., Houck, K. A. & Ferrara, N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem. 269, 25646–25654 (1994).

    CAS  Google Scholar 

  10. Fong, G. H., Rossant, J., Gertsenstein, M. & Breitman, M. L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70 (1995).

    Article  CAS  Google Scholar 

  11. Kappas, N. C. et al. The VEGF receptor Flt-1 spatially modulates Flk-1 signaling and blood vessel branching. J. Cell Biol. 181, 847–858 (2008).

    Article  CAS  Google Scholar 

  12. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  Google Scholar 

  13. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  CAS  Google Scholar 

  14. Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

    Article  Google Scholar 

  15. Leslie, J. D. et al. Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 134, 839–844 (2007).

    Article  CAS  Google Scholar 

  16. Lobov, I. B. et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc. Natl Acad. Sci. USA 104, 3219–3224 (2007).

    Article  CAS  Google Scholar 

  17. Siekmann, A. F. & Lawson, N. D. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445, 781–784 (2007).

    Article  CAS  Google Scholar 

  18. Suchting, S. et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Natl Acad. Sci. USA 104, 3225–3230 (2007).

    Article  CAS  Google Scholar 

  19. Williams, C. K., Li, J. L., Murga, M., Harris, A. L. & Tosato, G. Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood 107, 931–939 (2006).

    Article  CAS  Google Scholar 

  20. Harrington, L. S. et al. Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. Microvasc. Res. 75, 144–154 (2008).

    Article  CAS  Google Scholar 

  21. Holderfield, M. T. et al. HESR1/CHF2 suppresses VEGFR2 transcription independent of binding to E-boxes. Biochem. Biophys. Res. Commun. 346, 637–648 (2006).

    Article  CAS  Google Scholar 

  22. Suchting, S. et al. Negative regulators of vessel patterning. Novartis Found Symp. 283, 77–80; discussion 80–86, 238–241 (2007).

    Article  CAS  Google Scholar 

  23. Hayashi, H. & Kume, T. Foxc transcription factors directly regulate Dll4 and Hey2 expression by interacting with the VEGF-Notch signaling pathways in endothelial cells. PLoS ONE 3, e2401 (2008).

    Article  Google Scholar 

  24. Liu, Z. J. et al. Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol. Cell Biol. 23, 14–25 (2003).

    Article  Google Scholar 

  25. Bentley, K., Gerhardt, H. & Bates, P. A. Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J. Theor. Biol. 250, 25–36 (2008).

    Article  CAS  Google Scholar 

  26. Jakobsson, L., Domogatskaya, A., Tryggvason, K., Edgar, D. & Claesson-Welsh, L. Laminin deposition is dispensable for vasculogenesis but regulates blood vessel diameter independent of flow. Faseb J. 22, 1530–1539 (2008).

    Article  CAS  Google Scholar 

  27. Jakobsson, L., Kreuger, J. & Claesson-Welsh, L. Building blood vessels—stem cell models in vascular biology. J. Cell Biol. 177, 751–755 (2007).

    Article  CAS  Google Scholar 

  28. Sainson, R. C. et al. Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. Faseb J. 19, 1027–1029 (2005).

    Article  CAS  Google Scholar 

  29. Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

    Article  Google Scholar 

  30. Phng, L. K. et al. Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev. Cell 16, 70–82 (2009).

    Article  CAS  Google Scholar 

  31. Lamar, E. et al. Nrarp is a novel intracellular component of the Notch signaling pathway. Genes Dev. 15, 1885–1899 (2001).

    Article  CAS  Google Scholar 

  32. Gampel, A. et al. VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. Blood 108, 2624–2631 (2006).

    Article  CAS  Google Scholar 

  33. Chappell, J. C., Taylor, S. M., Ferrara, N. & Bautch, V. L. Local guidance of emerging vessel sprouts requires soluble Flt-1. Dev. Cell 17, 377–386 (2009).

    Article  CAS  Google Scholar 

  34. Tammela, T. et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656–660 (2008).

    Article  CAS  Google Scholar 

  35. Isogai, S., Lawson, N. D., Torrealday, S., Horiguchi, M. & Weinstein, B. M. Angiogenic network formation in the developing vertebrate trunk. Development 130, 5281–5290 (2003).

    Article  CAS  Google Scholar 

  36. Lu, P. F., Ewald, A. J., Martin, G. R. & Werb, Z. Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev. Biol. 321, 77–87 (2008).

    Article  CAS  Google Scholar 

  37. Chi, X. et al. Ret-dependent cell rearrangements in the wolffian duct epithelium initiate ureteric bud morphogenesis. Dev. Cell 17, 199–209 (2009).

    Article  CAS  Google Scholar 

  38. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl Acad. Sci. USA 90, 8424–8428 (1993).

    Article  CAS  Google Scholar 

  39. Vintersten, K. et al. Mouse in red: red fluorescent protein expression in mouse ES cells, embryos and adult animals. Genesis 40, 241–246 (2004).

    Article  CAS  Google Scholar 

  40. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66 (1995).

    Article  CAS  Google Scholar 

  41. Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326, 292–295 (1987).

    Article  CAS  Google Scholar 

  42. Jakobsson, L. et al. Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev. Cell 10, 625–634 (2006).

    Article  CAS  Google Scholar 

  43. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  Google Scholar 

  44. Jin, S. W., Beis, D., Mitchell, T., Chen, J. N. & Stainier, D. Y. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132, 5199–5209 (2005).

    Article  CAS  Google Scholar 

  45. Hogan, B. M. et al. Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat. Genet. 41, 396–398 (2009).

    Article  CAS  Google Scholar 

  46. Lawson, N. D. & Weinstein, B. M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307–318 (2002).

    Article  CAS  Google Scholar 

  47. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  48. Urasaki, A., Morvan, G. & Kawakami, K. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174, 639–649 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Cancer Research UK (CRUK) Light Microscopy facility, P. Jordan, the Protein Purification lab, S. Kjaer , J. Yang and J. Ure. We thank D. Barr and I. Moal for simulation and analysis work performed in the Biomolecular Modelling Laboratory CRUK, D. Sauvaget and J. Babbage for technical assistance and B. Thompson for comments on the manuscript. The authors are supported by CRUK, the Lister Institute of Preventive Medicine, the European Molecular Biology Organization (EMBO) Young Investigator Programme, the Fondation Leducq Transatlantic Network of Excellence ARTEMIS (H.G.), the Leukaemia Research Fund (to A.M.) and an EMBO long-term post-doctoral fellowship (to L.J.). We thank J. van Rheenen for discussions and assistance on the SP5 microscope (Leica Microsystems; equipment grant from the Dutch Organization of Scientific Research; NOW, 175.010.2007.007). We also thank A. de Graaff (M.Sc.) and the Hubrecht Imaging Centre (HIC) for imaging support. B.P. and S.S.-M. were supported by the Nederlandse Akademie van Wetenschappen (KNAW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Gerhardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2041 kb)

Supplementary Information

Supplementary Information Movie 1 (MOV 8139 kb)

Supplementary Information

Supplementary Information Movie 2 (MOV 10083 kb)

Supplementary Information

Supplementary Information Movie 3 (MOV 9282 kb)

Supplementary Information

Supplementary Information Movie 4 (MOV 6915 kb)

Supplementary Information

Supplementary Information Movie 5 (MOV 2630 kb)

Supplementary Information

Supplementary Information Movie 6 (MOV 6369 kb)

Supplementary Information

Supplementary Information Movie 7 (MOV 1557 kb)

Supplementary Information

Supplementary Information Movie 8 (MOV 1898 kb)

Supplementary Information

Supplementary Information Movie 9 (MOV 1812 kb)

Supplementary Information

Supplementary Information Movie 10 (MOV 12225 kb)

Supplementary Information

Supplementary Information Movie 11 (MOV 9349 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakobsson, L., Franco, C., Bentley, K. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12, 943–953 (2010). https://doi.org/10.1038/ncb2103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing