Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Membrane contacts between endosomes and ER provide sites for PTP1B–epidermal growth factor receptor interaction

Abstract

The epidermal growth factor receptor (EGFR) is a critical determinator of cell fate. Signalling from this receptor tyrosine kinase is spatially regulated by progression through the endocytic pathway, governing receptor half-life and accessibility to signalling proteins and phosphatases. Endocytosis of EGFR is required for interaction with the protein tyrosine phosphatase PTP1B (ref. 1), which localizes to the cytoplasmic face of the endoplasmic reticulum (ER)2, raising the question of how PTP1B comes into contact with endosomal EGFR. We show that EGFR–PTP1B interaction occurs by means of direct membrane contacts between the perimeter membrane of multivesicular bodies (MVBs) and the ER. The population of EGFR interacting with PTP1B is the same population that undergo ESCRT-mediated (endosomal sorting complex required for transport) sorting within MVBs, and PTP1B activity promotes the sequestration of EGFR on to MVB internal vesicles. Membrane contacts between endosomes and the ER form in both the presence and absence of stimulation by EGF. Thus membrane contacts between endosomes and the ER may represent a global mechanism for direct interaction between proteins on these two organelles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of D181A-PTP1B inhibits lysosomal delivery and degradation of EGF.
Figure 2: Expressed D181A-PTP1B promotes and stabilizes MVB contact with the ER.
Figure 3: Membrane contact site formation is regulated by PTP1B.
Figure 4: Expression of wild-type (WT) PTP1B results in rapid EGFR and Hrs dephosphorylation and EGFR degradation.
Figure 5: PTP1B promotes inward vesiculation in EGFR-containing MVBs.

Similar content being viewed by others

References

  1. Haj, F. G., Verveer, P. J., Squire, A., Neel, B. G. & Bastiaens, P. I. Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science 295, 1708–1711 (2002).

    Article  CAS  Google Scholar 

  2. Frangioni, J. V., Beahm, P. H., Shifrin, V., Jost, C. A. & Neel, B. G. The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell 68, 545–560 (1992).

    Article  CAS  Google Scholar 

  3. Romsicki, Y., Reece, M., Gauthier, J. Y., Asante-Appiah, E. & Kennedy, B. P. Protein tyrosine phosphatase-1B dephosphorylation of the insulin receptor occurs in a perinuclear endosome compartment in human embryonic kidney 293 cells. J. Biol. Chem. 279, 12868–12875 (2004).

    Article  CAS  Google Scholar 

  4. Sangwan, V. et al. Regulation of the Met receptor-tyrosine kinase by the protein-tyrosine phosphatase 1B and T-cell phosphatase. J. Biol. Chem. 283, 34374–34383 (2008).

    Article  CAS  Google Scholar 

  5. Babst, M. A protein's final ESCRT. Traffic 6, 2–9 (2005).

    Article  CAS  Google Scholar 

  6. Liao, H. J. & Carpenter, G. Role of the Sec61 translocon in EGF receptor trafficking to the nucleus and gene expression. Mol. Biol. Cell 18, 1064–1072 (2007).

    Article  CAS  Google Scholar 

  7. Flint, A. J., Tiganis, T., Barford, D. & Tonks, N. K. Development of 'substrate-trapping' mutants to identify physiological substrates of protein tyrosine phosphatases. Proc. Natl Acad. Sci. USA 94, 1680–1685 (1997).

    Article  CAS  Google Scholar 

  8. Futter, C. E., Pearse, A., Hewlett, L. J. & Hopkins, C. R. Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes. J. Cell Biol. 132, 1011–1023 (1996).

    Article  CAS  Google Scholar 

  9. Csordas, G. et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915–921 (2006).

    Article  CAS  Google Scholar 

  10. Sachse, M., Urbe, S., Oorschot, V., Strous, G. J. & Klumperman, J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol. Biol. Cell 13, 1313–1328 (2002).

    Article  CAS  Google Scholar 

  11. White, I. J., Bailey, L. M., Razi Aghakhani, M., Moss, S. E. & Futter, C. E. EGF stimulates annexin1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J. 25, 1–12 (2006).

    Article  CAS  Google Scholar 

  12. Rocha, N. et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J. Cell Biol. 185, 1209–1225 (2009).

    Article  CAS  Google Scholar 

  13. Johansson, M., Lehto, M., Tanhuanpaa, K., Cover, T. L. & Olkkonen, V. M. The oxysterol-binding protein homologue ORP1L interacts with Rab7 and alters functional properties of late endocytic compartments. Mol. Biol. Cell 16, 5480–5492 (2005).

    Article  CAS  Google Scholar 

  14. Loewen, C. J., Roy, A. & Levine, T. P. A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J. 22, 2025–2035 (2003).

    Article  CAS  Google Scholar 

  15. Lev, S., Ben Halevy, D., Peretti, D. & Dahan, N. The VAP protein family: from cellular functions to motor neuron disease. Trends Cell Biol. 18, 282–290 (2008).

    Article  CAS  Google Scholar 

  16. Ko, D. C., Gordon, M. D., Jin, J. Y. & Scott, M. P. Dynamic movements of organelles containing Niemann-Pick C1 protein: NPC1 involvement in late endocytic events. Mol. Biol. Cell 12, 601–614 (2001).

    Article  CAS  Google Scholar 

  17. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).

    Article  CAS  Google Scholar 

  18. Audhya, A., Desai, A. & Oegema, K. A role for Rab5 in structuring the endoplasmic reticulum. J. Cell Biol. 178, 43–56 (2007).

    Article  CAS  Google Scholar 

  19. Row, P. E., Clague, M. J. & Urbe, S. Growth factors induce differential phosphorylation profiles of the Hrs-Stam complex: a common node in signaling networks with signal specific properties. Biochem. J. 389, 629–636 (2005).

    Article  CAS  Google Scholar 

  20. Stern, K. A. et al. Epidermal growth factor receptor fate is controlled by Hrs tyrosine phosphorylation sites that regulate Hrs degradation. Mol. Cell. Biol. 27, 888–898 (2007).

    Article  CAS  Google Scholar 

  21. Futter, C. E., Collinson, L. M., Backer, J. M. & Hopkins, C. R. Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J. Cell Biol. 155, 1251–1264 (2001).

    Article  CAS  Google Scholar 

  22. Razi, M. & Futter, C. E. Distinct roles for Tsg101 and Hrs in multivesicular body formation and inward vesiculation. Mol. Biol. Cell 17, 3469–3483 (2006).

    Article  CAS  Google Scholar 

  23. Urbe, S. et al. The UIM domain of Hrs couples receptor sorting to vesicle formation. J. Cell Sci. 116, 4169–4179 (2003).

    Article  CAS  Google Scholar 

  24. Futter, C. E., Felder, S., Schlessinger, J., Ullrich, A. & Hopkins, C. R. Annexin I is phosphorylated in the multivesicular body during the processing of the epidermal growth factor receptor. J. Cell Biol. 120, 77–83 (1993).

    Article  CAS  Google Scholar 

  25. Yudushkin, I. A. et al. Live-cell imaging of enzyme-substrate interaction reveals spatial regulation of PTP1B. Science 315, 115–119 (2007).

    Article  CAS  Google Scholar 

  26. Tonks, N. K. PTP1B: from the sidelines to the front lines! FEBS Lett. 546, 140–148 (2003).

    Article  CAS  Google Scholar 

  27. Haj, F. G., Markova, B., Klaman, L. D., Bohmer, F. D. & Neel, B. G. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. J. Biol. Chem. 278, 739–744 (2003).

    Article  CAS  Google Scholar 

  28. Julien, S. G. et al. Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nature Genet. 39, 338–346 (2007).

    Article  CAS  Google Scholar 

  29. Bentires-Alj, M. & Neel, B. G. Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer. Cancer Res. 67, 2420–2424 (2007).

    Article  CAS  Google Scholar 

  30. Lennon, G., Auffray, C., Polymeropoulos, M. & Soares, M. B. The I.M.A.G.E. Consortium: An Integrated molecular analysis of genomes and their expression. Genomics 33, 151–152 (1996).

    Article  CAS  Google Scholar 

  31. Connolly, C. N., Futter, C. E., Gibson, A., Hopkins, C. R. & Cutler, D. F. Transport into and out of the Golgi complex studied by transfecting cells with cDNAs encoding horseradish peroxidase. J. Cell Biol. 127, 641–652 (1994).

    Article  CAS  Google Scholar 

  32. Slot, J. W. & Geuze, H. J. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur. J. Cell Biol. 38, 87–93 (1985).

    CAS  PubMed  Google Scholar 

  33. Tomas, A., Futter, C. & Moss, S. E. Annexin11 is required for midbody formation and completion of the terminal phase of cytokinesis. J. Cell Biol. 165, 813–822 (2004).

    Article  CAS  Google Scholar 

  34. Futter, C. E. et al. In polarized MDCK cells basolateral vesicles arise from clathrin-γ-adaptin-coated domains on endosomal tubules. J. Cell Biol. 141, 611–623 (1998).

    Article  CAS  Google Scholar 

  35. Slot, J. W., Geuze, H. J., Gigengack, S., Lienhard, G. E. & James, D. E. Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat. J. Cell Biol. 113, 123–135 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Lorna Bailey, Tim Levine, Steve Moss, Minoo Razi and the Futter laboratory and Institute of Ophthalmology EM unit members for technical help and advice. This work was funded by the Wellcome Trust (078304) and Cancer Research UK (C20675).

Author information

Authors and Affiliations

Authors

Contributions

E.R.E., I.J.W. and C.E.F. planned the work and drafted the manuscript. E.R.E., I.J.W. and A.T. did the experimental work and analysed the data.

Corresponding author

Correspondence to Clare E. Futter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1486 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eden, E., White, I., Tsapara, A. et al. Membrane contacts between endosomes and ER provide sites for PTP1B–epidermal growth factor receptor interaction. Nat Cell Biol 12, 267–272 (2010). https://doi.org/10.1038/ncb2026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2026

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing