Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription

A Corrigendum to this article was published on 01 November 2010

Abstract

Topoisomerase I (Top1) is a key enzyme in functioning at the interface between DNA replication, transcription and mRNA maturation. Here, we show that Top1 suppresses genomic instability in mammalian cells by preventing a conflict between transcription and DNA replication. Using DNA combing and ChIP (chromatin immunoprecipitation)-on-chip, we found that Top1-deficient cells accumulate stalled replication forks and chromosome breaks in S phase, and that breaks occur preferentially at gene-rich regions of the genome. Notably, these phenotypes were suppressed by preventing the formation of RNA–DNA hybrids (R-loops) during transcription. Moreover, these defects could be mimicked by depletion of the splicing factor ASF/SF2 (alternative splicing factor/splicing factor 2), which interacts functionally with Top1. Taken together, these data indicate that Top1 prevents replication fork collapse by suppressing the formation of R-loops in an ASF/SF2-dependent manner. We propose that interference between replication and transcription represents a major source of spontaneous replication stress, which could drive genomic instability during the early stages of tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Top1-deficient murine cells form DNA breaks in S phase and accumulate chromosomal aberrations.
Figure 2: Replication fork progression is impaired in the absence of Top1.
Figure 3: Analysis of sister replication-fork progression in Top1-depleted cells.
Figure 4: Inhibition of ASF/SF2 function induces fork asymmetry and chromosome breaks.
Figure 5: RNaseH1 suppresses fork asymmetry and DNA damage in Top1-deficient cells.
Figure 6: H2AX is enriched at active genes in Top1-deficient HCT116 cells.
Figure 7: Model for the role of Top1 in the coordination of DNA replication and gene expression.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Aladjem, M. I. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nature Rev. Genet. 8, 588–600 (2007).

    Article  CAS  Google Scholar 

  2. Ivessa, A. S. et al. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol. Cell 12, 1525–1536 (2003).

    Article  CAS  Google Scholar 

  3. Tourriere, H. & Pasero, P. Maintenance of fork integrity at damaged DNA and natural pause sites. DNA Repair 6, 900–913 (2007).

    Article  CAS  Google Scholar 

  4. Aguilera, A. & Gomez-Gonzalez, B. Genome instability: a mechanistic view of its causes and consequences. Nature Rev. Genet. 9, 204–217 (2008).

    Article  CAS  Google Scholar 

  5. Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006).

    Article  CAS  Google Scholar 

  6. Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006).

    Article  CAS  Google Scholar 

  7. Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An Oncogene-Induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    Article  CAS  Google Scholar 

  8. Azvolinsky, A., Giresi, P. G., Lieb, J. D. & Zakian, V. A. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol. Cell 34, 722–734 (2009).

    Article  CAS  Google Scholar 

  9. Nickoloff, J. A. & Reynolds, R. J. Transcription stimulates homologous recombination in mammalian cells. Mol. Cell. Biol. 10, 4837–4845 (1990).

    Article  CAS  Google Scholar 

  10. Gottipati, P., Cassel, T. N., Savolainen, L. & Helleday, T. Transcription-associated recombination is dependent on replication in mammalian Cells. Mol. Cell. Biol. 28, 154–164 (2008).

    Article  CAS  Google Scholar 

  11. Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nature Rev. Cancer 6, 789–802 (2006).

    Article  CAS  Google Scholar 

  12. Champoux, J. J. DNA toppoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70, 369–413 (2001).

    Article  CAS  Google Scholar 

  13. Thrash, C., Bankier, A. T., Barrell, B. G. & Sternglanz, R. Cloning, characterization, and sequence of the yeast DNA topoisomerase I gene. Proc. Natl Acad. Sci. USA 82, 4374–4378 (1985).

    Article  CAS  Google Scholar 

  14. Zhang, C. X., Chen, A. D., Gettel, N. J. & Hsieh, T. S. Essential functions of DNA topoisomerase I in Drosophila melanogaster. Dev. Biol. 222, 27–40 (2000).

    Article  CAS  Google Scholar 

  15. Miao, Z.-H. et al. Nonclassic functions of human topoisomerase I: genome-wide and pharmacologic Analyses. Cancer Res. 67, 8752–8761 (2007).

    Article  CAS  Google Scholar 

  16. Rossi, F. et al. Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381, 80–82 (1996).

    Article  CAS  Google Scholar 

  17. Soret, J. et al. Altered serine/arginine-rich protein phosphorylation and exonic enhancer-dependent splicing in mammalian cells lacking topoisomerase I. Cancer Res. 63, 8203–8211 (2003).

    CAS  PubMed  Google Scholar 

  18. Malanga, M., Czubaty, A., Girstun, A., Staron, K. & Althaus, F. R. Poly(ADP-ribose) binds to the splicing factor ASF/SF2 and regulates its phosphorylation by DNA Topoisomerase I. J. Biol. Chem. 283, 19991–19998 (2008).

    Article  CAS  Google Scholar 

  19. Li, X. & Manley, J. L. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365–378 (2005).

    Article  CAS  Google Scholar 

  20. Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999).

    Article  CAS  Google Scholar 

  21. Coquelle, A., Pipiras, E., Toledo, F., Buttin, G. & Debatisse, M. Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell 89, 215–225 (1997).

    Article  CAS  Google Scholar 

  22. Durkin, S. G. & Glover, T. W. Chromosome Fragile Sites. Annu. Rev. Genet. 41, 169–192 (2007).

    Article  CAS  Google Scholar 

  23. Michalet, X. et al. Dynamic molecular combing: stretching the whole human genome for high- resolution studies. Science 277, 1518–1523 (1997).

    Article  CAS  Google Scholar 

  24. Tourriere, H., Versini, G., Cordon-Preciado, V., Alabert, C. & Pasero, P. Mrc1 and tof1 promote replication fork progression and recovery independently of Rad53. Mol. Cell 19, 699–706 (2005).

    Article  CAS  Google Scholar 

  25. Conti, C. et al. Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol. Biol. Cell 18, 3059–3067 (2007).

    Article  CAS  Google Scholar 

  26. Bjornsti, M. A., Benedetti, P., Viglianti, G. A. & Wang, J. C. Expression of human DNA topoisomerase I in yeast cells lacking yeast DNA topoisomerase I: restoration of sensitivity of the cells to the antitumor drug camptothecin. Cancer Res. 49, 6318–6323 (1989).

    CAS  PubMed  Google Scholar 

  27. Hann, C. et al. Increased camptothecin toxicity induced in mammalian cells expressing Saccharomyces cerevisiae DNA topoisomerase I. J. Biol. Chem. 273, 8425–8433 (1998).

    Article  CAS  Google Scholar 

  28. Misteli, T. et al. Serine phosphorylation of SR proteins is required for their recruitment to sites of transcription in vivo. J. Cell Biol. 143, 297–307 (1998).

    Article  CAS  Google Scholar 

  29. Tazi, J. et al. Selective inhibition of topoisomerase I and various steps of spliceosome assembly by diospyrin derivatives. Mol. Pharmacol. 67, 1186–1194 (2005).

    Article  CAS  Google Scholar 

  30. Holmes, W. F. et al. Coordinate control and selective expression of the full complement of replication-dependent histone H4 genes in normal and cancer cells. J. Biol. Chem. 280, 37400–37407 (2005).

    Article  CAS  Google Scholar 

  31. Salceda, J., Fernandez, X. & Roca, J. Topoisomerase II, not topoisomerase I, is the proficient relaxase of nucleosomal DNA. EMBO J. 25, 2575–2583 (2006).

    Article  CAS  Google Scholar 

  32. Bermejo, R. et al. Top1- and Top2-mediated topological transitions at replication forks ensure fork progression and stability and prevent DNA damage checkpoint activation. Genes Dev. 21, 1921–1936 (2007).

    Article  CAS  Google Scholar 

  33. Anglana, M., Apiou, F., Bensimon, A. & Debatisse, M. Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114, 385–394 (2003).

    Article  CAS  Google Scholar 

  34. Courbet, S. et al. Replication fork movement drives remodeling of chromatin loops and origin choice in mammalian cells. Nature 455, 557–560 (2008).

    Article  CAS  Google Scholar 

  35. Gilbert, D. M. Replication origin plasticity, taylor-made: inhibition vs recruitment of origins under conditions of replication stress. Chromosoma 116, 341–347 (2007).

    Article  Google Scholar 

  36. Drolet, M. Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology. Mol. Microbiol. 59, 723–730 (2006).

    Article  CAS  Google Scholar 

  37. Lin, S., Coutinho-Mansfield, G., Wang, D., Pandit, S. & Fu, X.-D. The splicing factor SC35 has an active role in transcriptional elongation. Nature Struct. Mol. Biol. 15, 819–826 (2008).

    Article  CAS  Google Scholar 

  38. Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    Article  CAS  Google Scholar 

  39. Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007).

    Article  CAS  Google Scholar 

  40. Kapranov, P., Willingham, A. T. & Gingeras, T. R. Genome-wide transcription and the implications for genomic organization. Nature Rev. Genet. 8, 413–423 (2007).

    Article  CAS  Google Scholar 

  41. Das, R. et al. SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol. Cell 26, 867–881 (2007).

    Article  CAS  Google Scholar 

  42. Wei, X. et al. Segregation of transcription and replication sites into higher order domains. Science 281, 1502–1505 (1998).

    Article  CAS  Google Scholar 

  43. Vieira, K. F. et al. Recruitment of transcription complexes to the β-globin gene locus in vivo and in vitro. J. Biol. Chem. 279, 50350–50357 (2004).

    Article  CAS  Google Scholar 

  44. Lengronne, A. & Schwob, E. The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol. Cell 9, 1067–1078 (2002).

    Article  CAS  Google Scholar 

  45. Ekholm-Reed, S. et al. Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J. Cell Biol. 165, 789–800 (2004).

    Article  CAS  Google Scholar 

  46. Huvet, M. et al. Human gene organization driven by the coordination of replication and transcription. Genome Res. 17, 1278–1285 (2007).

    Article  CAS  Google Scholar 

  47. Ge, X. Q., Jackson, D. A. & Blow, J. J. Dormant origins licensed by excess Mcm2 7 are required for human cells to survive replicative stress. Genes Dev. 21, 3331–3341 (2007).

    Article  CAS  Google Scholar 

  48. Ibarra, A., Schwob, E. & Mendez, J. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc. Natl. Acad. Sci. USA 105, 8956–8961 (2008).

    Article  CAS  Google Scholar 

  49. Helmrich, A., Stout-Weider, K., Hermann, K., Schrock, E. & Heiden, T. Common fragile sites are conserved features of human and mouse chromosomes and relate to large active genes. Genome Res. 16, 1222–1230 (2006).

    Article  CAS  Google Scholar 

  50. Widrow, R. J., Hansen, R. S., Kawame, H., Gartler, S. M. & Laird, C. D. Very late DNA replication in the human cell cycle. Proc. Natl. Acad. Sci. USA 95, 11246–11250 (1998).

    Article  CAS  Google Scholar 

  51. Smogorzewska, A., Karlseder, J., Holtgreve-Grez, H., Jauch, A. & de Lange, T. DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr. Biol. 12, 1635–1644 (2002).

    Article  CAS  Google Scholar 

  52. Versini, G. et al. The yeast Sgs1 helicase is differentially required for genomic and ribosomal DNA replication. EMBO J. 22, 1939–1949 (2003).

    Article  CAS  Google Scholar 

  53. Pasero, P., Bensimon, A. & Schwob, E. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev. 16, 2479–2484 (2002).

    Article  CAS  Google Scholar 

  54. Verdun, R. E., Crabbe, L., Haggblom, C. & Karlseder, J. Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol. Cell 20, 551–561 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Debatisse and M. Méchali for discussions and critical comments on the manuscript, D. Durocher for communicating data before publication, J. Piette for his initial contribution to this project and E. Schwob and the DNA combing facility of Montpellier for providing silanized coverslips. Work in the P.P. laboratory is supported by FRM (Equipe FRM), ANR, INCa and the EMBO Young Investigator Programme. Work in the J.T. laboratory is supported by ANR. A.C. is supported by the Ligue contre le cancer (Comité de l'Hérault), ARC (Association pour la Recherche contre le Cancer) and INCa. S.T., L.C. and H.T. were recipients of fellowships from ARC, EMBO and CNRS, respectively.

Author information

Authors and Affiliations

Authors

Contributions

A.C. and P.P. designed the project and wrote the paper; S.T., L.C., C.C. and H.T. performed most of the experiments; H.H.G. and A.J. performed the M-FISH studies; V.P. and J.D.V. performed microarray experiments. A.T. performed bioinformatic analyses; C.T. performed part of the DNA combing experiments; Y.P. and J.T. provided important experimental materials and advice and all authors contributed to interpreting the results and editing the manuscript.

Corresponding authors

Correspondence to Arnaud Coquelle or Philippe Pasero.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information Figures and Tables

Supplementary Information (PDF 696 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuduri, S., Crabbé, L., Conti, C. et al. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat Cell Biol 11, 1315–1324 (2009). https://doi.org/10.1038/ncb1984

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1984

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing