Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N

Abstract

Centromeres are specialized chromosomal domains that direct kinetochore assembly during mitosis. CENP-A (centromere protein A), a histone H3-variant present exclusively in centromeric nucleosomes, is thought to function as an epigenetic mark that specifies centromere identity. Here we identify the essential centromere protein CENP-N as the first protein to selectively bind CENP-A nucleosomes but not H3 nucleosomes. CENP-N bound CENP-A nucleosomes in a DNA sequence-independent manner, but did not bind soluble CENP-A–H4 tetramers. Mutations in CENP-N that reduced its affinity for CENP-A nucleosomes caused defects in CENP-N localization and had dominant effects on the recruitment of CENP-H, CENP-I and CENP-K to centromeres. Depletion of CENP-N using siRNA (short interfering RNA) led to similar centromere assembly defects and resulted in reduced assembly of nascent CENP-A into centromeric chromatin. These data suggest that CENP-N interprets the information encoded within CENP-A nucleosomes and recruits other proteins to centromeric chromatin that are required for centromere function and propagation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CENP-N binds CENP-A nucleosomes.
Figure 2: Identification and characterization of CENP-N mutants defective in CENP-A-nucleosome binding.
Figure 3: CENP-N mutants show centromere assembly defects.
Figure 4: Depletion of CENP-N affects centromere assembly.

Similar content being viewed by others

References

  1. Cheeseman, I. M. & Desai, A. Molecular architecture of the kinetochore-microtubule interface. Nature Rev. Mol. Cell Biol. 9, 33–46 (2008).

    Article  CAS  Google Scholar 

  2. Choo, K. H. Domain Organization at the Centromere and Neocentromere. Dev. Cell 1, 165–177 (2001).

    Article  CAS  Google Scholar 

  3. Carroll, C. W. & Straight, A. F. Centromere formation: from epigenetics to self-assembly. Trends Cell Biol. 16, 70–78 (2006).

    Article  CAS  Google Scholar 

  4. Okada, M. et al. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nature Cell Biol. 8, 446–457 (2006).

    Article  CAS  Google Scholar 

  5. Foltz, D. R. et al. The human CENP-A centromeric nucleosome-associated complex. Nature Cell Biol. 8, 458–469 (2006).

    Article  CAS  Google Scholar 

  6. Izuta, H. et al. Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11, 673–684 (2006).

    Article  CAS  Google Scholar 

  7. Saitoh, H. et al. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70, 115–125 (1992).

    Article  CAS  Google Scholar 

  8. Masumoto, H., Masukata, H., Muro, Y., Nozaki, N. & Okazaki, T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J. Cell Biol. 109, 1963–1973 (1989).

    Article  CAS  Google Scholar 

  9. Fujita, Y. et al. Priming of centromere for CENP-A recruitment by human hMis18α, hMis18β, and M18BP1. Dev. Cell 12, 17–30 (2007).

    Article  CAS  Google Scholar 

  10. Maddox, P. S., Hyndman, F., Monen, J., Oegema, K. & Desai, A. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J. Cell Biol. 176, 757–763 (2007).

    Article  CAS  Google Scholar 

  11. Black, B. E. et al. Structural determinants for generating centromeric chromatin. Nature 430, 578–582 (2004).

    Article  CAS  Google Scholar 

  12. Black, B. E. et al. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol. Cell 25, 309–322 (2007).

    Article  CAS  Google Scholar 

  13. Black, B. E., Brock, M. A., Bedard, S., Woods, V. L. Jr & Cleveland, D. W. An epigenetic mark generated by the incorporation of CENP-A into centromeric nucleosomes. Proc. Natl Acad. Sci. USA 104, 5008–5013 (2007).

    Article  CAS  Google Scholar 

  14. McClelland, S. E. et al. The CENP-A NAC/CAD kinetochore complex controls chromosome congression and spindle bipolarity. EMBO J. 26, 5033–5047 (2007).

    Article  CAS  Google Scholar 

  15. Cheeseman, I. M., Hori, T., Fukagawa, T. & Desai, A. KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates. Mol. Biol. Cell (2007).

  16. Hayashi, T. et al. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118, 715–729 (2004).

    Article  CAS  Google Scholar 

  17. Jansen, L. E., Black, B. E., Foltz, D. R. & Cleveland, D. W. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176, 795–805 (2007).

    Article  CAS  Google Scholar 

  18. Hori, T. et al. CCAN Makes Multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135, 1039–1052 (2008).

    Article  CAS  Google Scholar 

  19. Liu, S. T., Rattner, J. B., Jablonski, S. A. & Yen, T. J. Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J. Cell Biol. 175, 41–53 (2006).

    Article  CAS  Google Scholar 

  20. Goshima, G., Kiyomitsu, T., Yoda, K. & Yanagida, M. Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J. Cell Biol. 160, 25–39 (2003).

    Article  CAS  Google Scholar 

  21. Yang, C. H., Tomkiel, J., Saitoh, H., Johnson, D. H. & Earnshaw, W. C. Identification of overlapping DNA-binding and centromere-targeting domains in the human kinetochore protein CENP.-C. Mol. Cell Biol. 16, 3576–3586 (1996).

    Article  CAS  Google Scholar 

  22. Trazzi, S. et al. In vivo functional dissection of human inner kinetochore protein CENP.-C. J. Structural Biology 140, 39–48 (2002).

    Article  CAS  Google Scholar 

  23. Luger, K., Rechsteiner, T. J. & Richmond, T. J. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol. 304, 3–19 (1999).

    Article  CAS  Google Scholar 

  24. Hoffman, D. B., Pearson, C. G., Yen, T. J., Howell, B. J. & Salmon, E. D. Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores. Mol. Biol. Cell 12, 1995–2009 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the Straight Lab for helpful comments and support, J. Minshull and DNA2.0 (CA, USA) for gene synthesis, S. H. Hanissian for the CENP-U(50) cDNA, J. Yang, G. Narlikar, M. Resch, K. Luger and J. Hansen for reagents and help with nucleosome reconstitution, S.-T. Liu for the CENP-H and CENP-I antibodies and D. Herschlag for advice. C.W.C. was supported by a postdoctoral fellowship from the Helen Hay Whitney Foundation. K.G. was supported by a predoctoral fellowship from the National Science Foundation and by a NIH grant (T32GM007276). A.F.S. is a Gordon Family Scholar supported by the Damon Runyon Cancer Research Foundation, and this work was supported by a NIH grant (R01GM074728). M.C.C.S. is supported by the Fundação para a Ciência e a Tecnologia (FCT; SFRH/BD33219/2007). LETJ is supported by the FCT, Fundação Calouste Gulbenkian and the EU Seventh Framework Programme.

Author information

Authors and Affiliations

Authors

Contributions

C.W.C. and A.F.S. designed the experiments and wrote the manuscript; C.W.C. performed all the experiments except those presented in Figure 4c, which were performed by M.C.C.S. and L.E.T.J.; and K.G. purified histones and helped with nucleosome assembly.

Corresponding author

Correspondence to Aaron F. Straight.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2276 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, C., Silva, M., Godek, K. et al. Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat Cell Biol 11, 896–902 (2009). https://doi.org/10.1038/ncb1899

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1899

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing