Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Arp2/3 complex and WASp are required for apical trafficking of Delta into microvilli during cell fate specification of sensory organ precursors

Abstract

Cell fate decisions mediated by the Notch signalling pathway require direct cell–cell contact between adjacent cells. In Drosophila melanogaster, an external sensory organ (ESO) develops from a single sensory organ precursor (SOP) and its fate specification is governed by differential Notch activation. Here we show that mutations in actin-related protein-3 (Arp3) compromise Notch signalling, leading to a fate transformation of the ESO. Our data reveal that during ESO fate specification, most endocytosed vesicles containing the ligand Delta traffic to a prominent apical actin-rich structure (ARS) formed in the SOP daughter cells. Using immunohistochemistry and transmission electron microscopy (TEM) analyses, we show that the ARS contains numerous microvilli on the apical surface of SOP progeny. In Arp2/3 and WASp mutants, the surface area of the ARS is substantially reduced and there are significantly fewer microvilli. More importantly, trafficking of Delta-positive vesicles from the basal area to the apical portion of the ARS is severely compromised. Our data indicate that WASp-dependent Arp2/3 actin polymerization is crucial for apical presentation of Delta, providing a mechanistic link between actin polymerization and Notch signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Arp3 mutations cause a pIIa-to-pIIb transformation in the ESO lineage
Figure 2: Arp3 is required in the signal sending cells during Notch signalling
Figure 3: Delta is normally endocytosed in Arp3 and Arpc1 mutant pIIa-pIIb.
Figure 4: The ARS forms specifically in the pIIa-pIIb progeny and is reduced in Arp3, Arpc1 and WASp mutant SOP progeny.
Figure 5: TEM analysis reveals enrichment of actin-filled finger-like projections in pIIa-pIIb cells at 18 h APF.
Figure 6: Finger-like projections in pIIa-pIIb cells are enriched with F-actin bundles and are marked by a microvillar marker Myo1B.
Figure 7: Delta localization to the ARS is reduced in Arpc1 mutants.
Figure 8: Arp2/3 and WASp are required for trafficking of endocytosed Delta to the apical ARS 1 h post-endocytosis.

Similar content being viewed by others

References

  1. Tien, A. C., Rajan, A. & Bellen, H. J. A Notch updated. J. Cell Biol. 184 (5), 621–629 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nature Rev. Mol. Cell Biol. 7, 678–689 (2006).

    CAS  Google Scholar 

  3. Schweisguth, F. Regulation of Notch signaling activity. Curr. Biol. 14, R129–138 (2004).

    CAS  PubMed  Google Scholar 

  4. Louvi, A. & Artavanis-Tsakonas, S. Notch signalling in vertebrate neural development. Nature Rev. 7, 93–102 (2006).

    CAS  Google Scholar 

  5. Bray S. Notch signalling in Drosophila: three ways to use a pathway. Sem. Cell Dev. Biol. 9, 591–597 (1998).

    CAS  Google Scholar 

  6. Le Borgne, R. & Schweisguth, F. Unequal segregation of Neuralized biases Notch activation during asymmetric cell division. Dev. Cell 5, 139–148 (2003).

    CAS  PubMed  Google Scholar 

  7. Rhyu, M. S., Jan, L. Y. & Jan, Y. N. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76, 477–491 (1994).

    CAS  PubMed  Google Scholar 

  8. Gho, M., Bellaiche, Y. & Schweisguth, F. Revisiting the Drosophila microchaete lineage: a novel intrinsically asymmetric cell division generates a glial cell. Development 126, 3573–3584 (1999).

    CAS  PubMed  Google Scholar 

  9. Zeng, C., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. Delta and Serrate are redundant Notch ligands required for asymmetric cell divisions within the Drosophila sensory organ lineage. Genes Dev. 12, 1086–1091 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Parks, A. L., Klueg, K. M., Stout, J. R. & Muskavitch, M. A. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127, 1373–1385 (2000).

    CAS  PubMed  Google Scholar 

  11. Wang, W. & Struhl, G. Drosophila Epsin mediates a select endocytic pathway that DSL ligands must enter to activate Notch. Development 131, 5367–5380 (2004).

    CAS  PubMed  Google Scholar 

  12. Emery, G. et al. Asymmetric Rab 11 endosomes regulate delta recycling and specify cell fate in the Drosophila nervous system. Cell 122, 763–773 (2005).

    CAS  PubMed  Google Scholar 

  13. Jafar-Nejad, H. et al. Sec15, a component of the exocyst, promotes notch signaling during the asymmetric division of Drosophila sensory organ precursors. Dev. Cell 9, 351–363 (2005).

    CAS  PubMed  Google Scholar 

  14. Hartenstein, V. & Posakony, J. W. A dual function of the Notch gene in Drosophila sensillum development. Dev. Biol. 142, 13–30 (1990).

    CAS  PubMed  Google Scholar 

  15. Berdnik, D., Torok, T., Gonzalez-Gaitan, M. & Knoblich, J. A. The endocytic protein α-Adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev. Cell 3, 221–231 (2002).

    CAS  PubMed  Google Scholar 

  16. Tien, A. C. et al. Ero1L, a thiol oxidase, is required for Notch signaling through cysteine bridge formation of the Lin12-Notch repeats in Drosophila melanogaster. J. Cell Biol. 182, 1113–1125 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhai, R. G. et al. Mapping Drosophila mutations with molecularly defined P element insertions. Proc. Natl Acad. Sci. USA 100, 10860–10865 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hudson, A. M. & Cooley, L. A subset of dynamic actin rearrangements in Drosophila requires the Arp2/3 complex. J. Cell Biol. 156, 677–687 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Machesky, L. M. & Gould, K. L. The Arp2/3 complex: a multifunctional actin organizer. Curr. Opin. Cell Biol. 11, 117–121 (1999).

    CAS  PubMed  Google Scholar 

  20. Tal, T., Vaizel-Ohayon, D. & Schejter, E. D. Conserved interactions with cytoskeletal but not signaling elements are an essential aspect of Drosophila WASp function. Dev. Biol. 243, 260–271 (2002).

    CAS  PubMed  Google Scholar 

  21. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    CAS  PubMed  Google Scholar 

  22. Ben-Yaacov, S., Le Borgne, R., Abramson, I., Schweisguth, F. & Schejter, E. D. Wasp, the Drosophila Wiskott-Aldrich syndrome gene homologue, is required for cell fate decisions mediated by Notch signaling. J. Cell Biol. 152, 1–13 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Struhl, G., Fitzgerald, K. & Greenwald, I. Intrinsic activity of the Lin-12 and Notch intracellular domains in vivo. Cell 74, 331–345 (1993).

    CAS  PubMed  Google Scholar 

  24. Ruohola, H. et al. Role of neurogenic genes in establishment of follicle cell fate and oocyte polarity during oogenesis in Drosophila. Cell 66, 433–449 (1991).

    CAS  PubMed  Google Scholar 

  25. Lopez-Schier, H. & St Johnston, D. Delta signaling from the germ line controls the proliferation and differentiation of the somatic follicle cells during Drosophila oogenesis. Genes Dev. 15, 1393–1405 (2001).

    CAS  PubMed  Google Scholar 

  26. Assa-Kunik, E., Torres, I. L., Schejter, E. D., Johnston, D. S. & Shilo, B. Z. Drosophila follicle cells are patterned by multiple levels of Notch signaling and antagonism between the Notch and JAK/STAT pathways. Development 134, 1161–1169 (2007).

    CAS  PubMed  Google Scholar 

  27. Sun, J. & Deng, W. M. Hindsight mediates the role of notch in suppressing hedgehog signaling and cell proliferation. Dev. Cell 12, 431–442 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. de Celis, J. F., Garcia-Bellido, A. & Bray, S. J. Activation and function of Notch at the dorsal-ventral boundary of the wing imaginal disc. Development 122, 359–369 (1996).

    CAS  PubMed  Google Scholar 

  29. de Celis, J. F. & Bray, S. Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development 124, 3241–3251 (1997).

    CAS  PubMed  Google Scholar 

  30. Micchelli, C. A., Rulifson, E. J. & Blair, S. S. The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate. Development 124, 1485–1495 (1997).

    CAS  PubMed  Google Scholar 

  31. Seugnet, L., Simpson, P. & Haenlin, M. Requirement for dynamin during Notch signaling in Drosophila neurogenesis. Dev. Biol. 192, 585–598 (1997).

    CAS  PubMed  Google Scholar 

  32. Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320 (2005).

    CAS  PubMed  Google Scholar 

  33. Galletta, B. J., Chuang, D. Y. & Cooper, J. A. Distinct roles for Arp2/3 regulators in actin assembly and endocytosis. PLoS Biol. 6, e1 (2008).

    PubMed  PubMed Central  Google Scholar 

  34. Chen, M. S. et al. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351, 583–586 (1991).

    CAS  PubMed  Google Scholar 

  35. van der Bliek, A. M. & Meyerowitz, E. M. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351, 411–414 (1991).

    CAS  PubMed  Google Scholar 

  36. Le Borgne, R., Bellaiche, Y. & Schweisguth, F. Drosophila E-cadherin regulates the orientation of asymmetric cell division in the sensory organ lineage. Curr. Biol. 12, 95–104 (2002).

    CAS  PubMed  Google Scholar 

  37. Lai, E. C. & Rubin, G. M. neuralized functions cell-autonomously to regulate a subset of notch-dependent processes during adult Drosophila development. Dev. Biol. 231, 217–233 (2001).

    CAS  PubMed  Google Scholar 

  38. Maupin, P. & Pollard, T. D. Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J. Cell Biol. 96, 51–62 (1983).

    CAS  PubMed  Google Scholar 

  39. Heintzelman, M. B. & Mooseker, M. S. Assembly of the intestinal brush border cytoskeleton. Curr. Top. Dev. Biol. 26, 93–122 (1992).

    CAS  PubMed  Google Scholar 

  40. Majstoravich, S. et al. Lymphocyte microvilli are dynamic, actin-dependent structures that do not require Wiskott-Aldrich syndrome protein (WASp) for their morphology. Blood 104, 1396–1403 (2004).

    CAS  PubMed  Google Scholar 

  41. von Andrian, U. H., Hasslen, S. R., Nelson, R. D., Erlandsen, S. L. & Butcher, E. C. A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell 82, 989–999 (1995).

    CAS  PubMed  Google Scholar 

  42. Singer, II. et al. CCR5, CXCR4, and CD4 are clustered and closely apposed on microvilli of human macrophages and T cells. J. Virol. 75, 3779–3790 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Morgan, N. S., Heintzelman, M. B. & Mooseker, M. S. Characterization of myosin-IA and myosin-IB, two unconventional myosins associated with the Drosophila brush border cytoskeleton. Dev. Biol. 172, 51–71 (1995).

    CAS  PubMed  Google Scholar 

  44. Le Borgne, R. Regulation of Notch signalling by endocytosis and endosomal sorting. Curr. Opin. Cell Biol. 18, 213–222 (2006).

    CAS  PubMed  Google Scholar 

  45. Emery, G. & Knoblich, J. A. Endosome dynamics during development. Curr. Opin. Cell Biol. 18, 407–415 (2006).

    CAS  PubMed  Google Scholar 

  46. Chhabra, E. S. & Higgs, H. N. The many faces of actin: matching assembly factors with cellular structures. Nature Cell Biol. 9, 1110–1121 (2007).

    CAS  PubMed  Google Scholar 

  47. De Joussineau, C. et al. Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila. Nature 426, 555–559 (2003).

    CAS  PubMed  Google Scholar 

  48. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rohatgi, R., Milenkovic, L. & Scott, M. P. Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372–376 (2007).

    CAS  PubMed  Google Scholar 

  50. Kiprilov, E. N. et al. Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery. J. Cell Biol. 180, 897–904 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ilagan, M. X. & Kopan, R. SnapShot: notch signaling pathway. Cell 128, 1246 (2007).

    PubMed  Google Scholar 

  52. Chen, H. & De Camilli, P. The association of epsin with ubiquitinated cargo along the endocytic pathway is negatively regulated by its interaction with clathrin. Proc. Natl Acad. Sci. USA 102, 2766–2771 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sigismund, S. et al. Clathrin-independent endocytosis of ubiquitinated cargos. Proc. Natl Acad. Sci. USA 102, 2760–2765 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Imai, K., Nonoyama, S. & Ochs, H. D. WASP (Wiskott-Aldrich syndrome protein) gene mutations and phenotype. Curr. Opin. Allergy Clin. Immunol. 3, 427–436 (2003).

    CAS  PubMed  Google Scholar 

  55. Tanigaki, K. & Honjo, T. Regulation of lymphocyte development by Notch signaling. Nature Immunol. 8, 451–456 (2007).

    CAS  Google Scholar 

  56. Osborne, B. A. & Minter, L. M. Notch signalling during peripheral T-cell activation and differentiation. Nature Rev. Immunol. 7, 64–75 (2007).

    CAS  Google Scholar 

  57. Struhl, G. & Greenwald, I. Presenilin-mediated transmembrane cleavage is required for Notch signal transduction in Drosophila. Proc. Natl Acad. Sci.USA 98, 229–234 (2001).

    CAS  PubMed  Google Scholar 

  58. Hudson, A. M. & Cooley, L. A subset of dynamic actin rearrangements in Drosophila requires the Arp2/3 complex. J. Cell Biol. 156, 677–687 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ben-Yaacov, S., Le Borgne, R., Abramson, I., Schweisguth, F. & Schejter, E. D. Wasp, the Drosophila Wiskott-Aldrich syndrome gene homologue, is required for cell fate decisions mediated by Notch signaling. J. Cell Biol. 152, 1–13 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zallen, J. A. et al. SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila. J. Cell Biol. 156, 689–701 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Watts, R. J., Schuldiner, O., Perrino, J., Larsen, C. & Luo, L. Glia engulf degenerating axons during developmental axon pruning. Curr. Biol. 14, 678–684 (2004).

    CAS  PubMed  Google Scholar 

  62. Lai, E. C. & Rubin, G. M. neuralized functions cell-autonomously to regulate a subset of notch-dependent processes during adult Drosophila development. Dev. Biol. 231, 217–233 (2001).

    CAS  PubMed  Google Scholar 

  63. Frise, E., Knoblich, J. A., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. The Drosophila Numb protein inhibits signaling of the Notch receptor during cell–cell interaction in sensory organ lineage. Proc. Natl Acad. Sci. USA 93, 11925–11932 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Berdnik, D., Torok, T., Gonzalez-Gaitan, M. & Knoblich, J. A. The endocytic protein α-Adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev. Cell 3, 221–231 (2002).

    CAS  PubMed  Google Scholar 

  65. Lai, E. C., Deblandre, G. A., Kintner, C. & Rubin, G. M. Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of Delta. Dev. Cell 1, 783–794 (2001).

    CAS  PubMed  Google Scholar 

  66. Manning, L. & Doe, C. Q. Prospero distinguishes sibling cell fate without asymmetric localization in the Drosophila adult external sense organ lineage. Development 126, 2063–2071 (1999).

    CAS  PubMed  Google Scholar 

  67. Wang, W. & Struhl, G. Drosophila Epsin mediates a select endocytic pathway that DSL ligands must enter to activate Notch. Development 131, 5367–5380 (2004).

    CAS  PubMed  Google Scholar 

  68. Tien, A. C. et al. Ero1L, a thiol oxidase, is required for Notch signaling through cysteine bridge formation of the Lin12-Notch repeats in Drosophila melanogaster. J. Cell Biol. 182, 1113–1125 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Blochlinger, K., Bodmer, R., Jan, L. Y. & Jan, Y. N. Patterns of expression of cut, a protein required for external sensory organ development in wild-type and cut mutant Drosophila embryos. Genes Dev. 4, 1322–1331 (1990).

    CAS  PubMed  Google Scholar 

  70. Robinow, S. & White, K. Characterization and spatial distribution of the ELAV protein during Drosophila melanogaster development. J. Neurobiol. 22, 443–461 (1991).

    CAS  PubMed  Google Scholar 

  71. Nolo, R., Abbott, L. A. & Bellen, H. J. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102, 349–362 (2000).

    CAS  PubMed  Google Scholar 

  72. Fehon, R. G. et al. Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 61, 523–534 (1990).

    CAS  PubMed  Google Scholar 

  73. Parks, A. L., Klueg, K. M., Stout, J. R. & Muskavitch, M. A. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127, 1373–1385 (2000).

    CAS  PubMed  Google Scholar 

  74. Patel, N. H., Snow, P. M. & Goodman, C. S. Characterization and cloning of fasciclin III: a glycoprotein expressed on a subset of neurons and axon pathways in Drosophila. Cell 48, 975–988 (1987).

    CAS  PubMed  Google Scholar 

  75. Yip, M. L., Lamka, M. L. & Lipshitz, H. D. Control of germ-band retraction in Drosophila by the zinc-finger protein HINDSIGHT. Development 124, 2129–2141 (1997).

    CAS  PubMed  Google Scholar 

  76. Woods, D. F. & Bryant, P. J. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell 66, 451–464 (1991).

    CAS  PubMed  Google Scholar 

  77. Morgan, N. S., Heintzelman, M. B. & Mooseker, M. S. Characterization of myosin-IA and myosin-IB, two unconventional myosins associated with the Drosophila brush border cytoskeleton. Dev. Biol. 172, 51–71 (1995).

    CAS  PubMed  Google Scholar 

  78. Rhyu, M. S., Jan, L. Y. & Jan, Y. N. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76, 477–491 (1994).

    CAS  PubMed  Google Scholar 

  79. Oda, H., Uemura, T., Harada, Y., Iwai, Y. & Takeichi, M. A Drosophila homolog of cadherin associated with armadillo and essential for embryonic cell–cell adhesion. Dev. Biol. 165, 716–726 (1994).

    CAS  PubMed  Google Scholar 

  80. Wucherpfennig, T., Wilsch-Brauninger, M. & Gonzalez-Gaitan, M. Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release. J. Cell Biol. 161, 609–624 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Dollar, G., Struckhoff, E., Michaud, J. & Cohen, R. S. Rab11 polarization of the Drosophila oocyte: a novel link between membrane trafficking, microtubule organization, and oskar mRNA localization and translation. Development 129, 517–526 (2002).

    CAS  PubMed  Google Scholar 

  82. Sweeney, S. T. & Davis, G. W. Unrestricted synaptic growth in spinster-a late endosomal protein implicated in TGF-β-mediated synaptic growth regulation. Neuron 36, 403–416 (2002).

    CAS  PubMed  Google Scholar 

  83. Lloyd, T. E. et al. Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 108, 261–269 (2002).

    CAS  PubMed  Google Scholar 

  84. Larsen, C. W., Hirst, E., Alexandre, C. & Vincent, J. P. Segment boundary formation in Drosophila embryos. Development 130, 5625–5635 (2003).

    CAS  PubMed  Google Scholar 

  85. Maupin, P. & Pollard, T. D. Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J. Cell Biol. 96, 51–62 (1983).

    CAS  PubMed  Google Scholar 

  86. Le Borgne, R. & Schweisguth, F. Unequal segregation of Neuralized biases Notch activation during asymmetric cell division. Dev. Cell 5, 139–148 (2003).

    CAS  PubMed  Google Scholar 

  87. Emery, G. et al. Asymmetric Rab 11 endosomes regulate Delta recycling and specify cell fate in the Drosophila nervous system. Cell 122, 763–773 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to W. Theurkauf, L. Cooley, E. Schejter, J. Skeath, D. F. Ready, P. Badenhorst, Y. N. Jan, P. Bryant, M. González Gaitán, G. Struhl, E. C. Lai, M. Muskavitch, A. L. Parks, F. B. Gertler, L. M. Lanier, J. Knoblich, F. Schweisguth, R. Dubreuil, W. Sullivan, M. S. Mooseker, G.M. Guild, the Bloomington Stock Center and the Developmental Studies Hybridoma Bank for reagents. We thank G. Emery for advice regarding the Delta endocytosis assay. We would like to thank H. Jafar-Nejad for suggestions and advice during the screen and comments on the manuscript. We thank P. Verstreken and C. V. Ly for their help with the screen, and R. Atkinson for advice on imaging. Confocal microscopy was supported by the BCM Mental Retardation and Developmental Disabilities Research Center. H.J.B. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.R., A.T. and H.B. conceived the project. A.R. and A.T. carried out the screen, mapped the genes and executed the project. K.S. was involved in the screen and mapping of the genes. C.M.H. in collaboration with A.R. and A.T. designed the TEM experiments and C.M.H. carried out the TEM experiments.

Corresponding author

Correspondence to Hugo J. Bellen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 7423 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajan, A., Tien, AC., Haueter, C. et al. The Arp2/3 complex and WASp are required for apical trafficking of Delta into microvilli during cell fate specification of sensory organ precursors. Nat Cell Biol 11, 815–824 (2009). https://doi.org/10.1038/ncb1888

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1888

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing