Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Scaffolding function of PAK in the PDK1–Akt pathway

Abstract

Many extracellular signals stimulate phosphatidylinositol-3-kinase, which in turn activates the Rac1 GTPase, the protein kinase Akt and the Akt Thr 308 upstream kinase PDK1. Active Rac1 stimulates a number of events, including substrate phosphorylation by a subgroup of the PAK family of kinases. The combined effects of Rac1, PDK1 and Akt are crucial for cell migration, growth, survival, metabolism and tumorigenesis. Here we show that Rac1 stimulates a second, kinase-independent function of PAK1. The PAK1 kinase domain serves as a scaffold to facilitate Akt stimulation by PDK1 and to aid recruitment of Akt to the membrane. PAK differentially activates subpopulations of Akt. These findings reveal scaffolding functions of PAK that regulate the efficiency, localization and specificity of the PDK1–Akt pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PAK mediates Rac activation of Akt.
Figure 2: Phosphorylation of Akt by PAK1.
Figure 3: PAK1 interacts with Akt and facilitates membrane translocation of Akt.
Figure 4: PAK1 interacts with PDK1 and facilitates complex formation between PDK1 and Akt.
Figure 5: Akt1 is essential in PAK regulation of cell motility.

Similar content being viewed by others

References

  1. Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Nobes, C. D., Hawkins, P., Stephens, L. & Hall, A. Activation of the small GTP-binding proteins rho and rac by growth factor receptors. J. Cell Sci. 108, 225–233 (1995).

    CAS  PubMed  Google Scholar 

  3. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Bokoch, G. M. Biology of the p21-activated kinases. Annu. Rev. Biochem. 72, 743–781 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S. & Lim, L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367, 40–46 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Frost, J. A., Khokhlatchev, A., Stippec, S., White, M. A. & Cobb, M. H. Differential effects of PAK1-activating mutations reveal activity-dependent and -independent effects on cytoskeletal regulation. J. Biol. Chem. 273, 28191–28198 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Sells, M. A., Boyd, J. T. & Chernoff, J. p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J. Cell Biol. 145, 837–849 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Higuchi, M., Masuyama, N., Fukui, Y., Suzuki, A. & Gotoh, Y. Akt mediates Rac/Cdc42-regulated cell motility in growth factor-stimulated cells and in invasive PTEN knockout cells. Curr. Biol. 11, 1958–1962 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Alessi, D. R. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr. Biol. 7, 261–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Kohn, A. D., Takeuchi, F. & Roth, R. A. Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. J. Biol. Chem. 271, 21920–21926 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Owen, D., Mott, H. R., Laue, E. D. & Lowe, P. N. Residues in Cdc42 that specify binding to individual CRIB effector proteins. Biochemistry 39, 1243–1250 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Gorlach, A., BelAiba, R. S., Hess, J. & Kietzmann, T. Thrombin activates the p21-activated kinase in pulmonary artery smooth muscle cells. Role in tissue factor expression. Thromb. Haemost. 93, 1168–1175 (2005).

    Article  PubMed  Google Scholar 

  14. Mao, K. et al. Regulation of Akt/PKB activity by P21-activated kinase in cardiomyocytes. J. Mol. Cell. Cardiol. 44, 429–344 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Scheid, M. P., Marignani, P. A. & Woodgett, J. R. Multiple phosphoinositide 3-kinase-dependent steps in activation of protein kinase B. Mol. Cell. Biol. 22, 6247–6260 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. King, C. C. et al. p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). J. Biol. Chem. 275, 41201–41209 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, Q. et al. Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts. Mol. Cell. Biol. 19, 4008–4018 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reeder, M. K., Serebriiskii, I. G., Golemis, E. A. & Chernoff, J. Analysis of small GTPase signaling pathways using p21-activated kinase mutants that selectively couple to Cdc42. J. Biol. Chem. 276, 40606–40613 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Joneson, T., White, M. A., Wigler, M. H. & Bar-Sagi, D. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science 271, 810–812 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Lamarche, N. et al. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87, 519–529 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Irie, H. Y. et al. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial–mesenchymal transition. J. Cell Biol. 171, 1023–1034 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoeli-Lerner, M. et al. Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol. Cell 20, 539–550 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Zhou, G. L. et al. Opposing roles for Akt1 and Akt2 in Rac/Pak signaling and cell migration. J. Biol. Chem. 281, 36443–36453 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Brazil, D. P., Yang, Z. Z. & Hemmings, B. A. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem. Sci. 29, 233–242 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Woodgett, J. R. Recent advances in the protein kinase B signaling pathway. Curr. Opin. Cell Biol. 17, 150–157 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Zhou, G. L. et al. Akt phosphorylation of serine 21 on Pak1 modulates Nck binding and cell migration. Mol. Cell. Biol. 23, 8058–8069 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Higuchi, M., Onishi, K., Masuyama, N. & Gotoh, Y. The phosphatidylinositol-3 kinase (PI(3)K)–Akt pathway suppresses neurite branch formation in NGF-treated PC12 cells. Genes Cells 8, 657–669 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Lei, M. et al. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102, 387–397 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Jakobi, R., McCarthy, C. C. & Koeppel, M. A. Mammalian expression vectors for epitope tag fusion proteins that are toxic in E. coli. Biotechniques 33, 1218–1222 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Lei, M., Robinson, M. A. & Harrison, S. C. The active conformation of the PAK1 kinase domain. Structure 13, 769–778 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jonathan A. Cooper, Michael E. Greenberg and members of the Gotoh Laboratory for critical reading of the manuscript, encouragement and helpful discussion. We also thank Michael E. Greenberg and Steve M. Shamah for phosphorylated Bad antibody and phosphorylated PAK1 antibody, and Masaki Inagaki for PAK construct. This work was supported in part by Grants-Aid from the Ministry of Education, Science, Sports and Culture of Japan, SORST of the Japan Science and Technology Corporation, Global COE Program (Integrative Life Science Based on the Study of Biosignaling Mechanisms), MEXT, the Mitsubishi Foundation, the Uehara Foundation and the Princess Takamatsu Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.H. and K.O. performed all the experiments and analysed the data; C.Y. assisted with the experiments shown in Supplementary Information, Fig. S5b; Y.G. supervised the study.

Corresponding author

Correspondence to Yukiko Gotoh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4422 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higuchi, M., Onishi, K., Kikuchi, C. et al. Scaffolding function of PAK in the PDK1–Akt pathway. Nat Cell Biol 10, 1356–1364 (2008). https://doi.org/10.1038/ncb1795

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1795

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing