Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells

Abstract

Satellite cells assure postnatal skeletal muscle growth and repair. Despite extensive studies, their stem cell character remains largely undefined. Using pulse-chase labelling with BrdU to mark the putative stem cell niche, we identify a subpopulation of label-retaining satellite cells during growth and after injury. Strikingly, some of these cells display selective template-DNA strand segregation during mitosis in the muscle fibre in vivo, as well as in culture independent of their niche, indicating that genomic DNA strands are nonequivalent. Furthermore, we demonstrate that the asymmetric cell-fate determinant Numb segregates selectively to one daughter cell during mitosis and before differentiation, suggesting that Numb is associated with self-renewal. Finally, we show that template DNA cosegregates with Numb in label-retaining cells that express the self-renewal marker Pax7. The cosegregation of 'immortal' template DNA strands and their link with the asymmetry apparatus has important implications for stem cell biology and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Asymmetric segregation of Numb in non-differentiating satellite cells.
Figure 2: Label-retaining cells in skeletal muscle during growth and after injury.
Figure 3: Asymmetric segregation of template DNA strands in label-retaining cells.
Figure 4: Live imaging of template DNA segregation in label-retaining cells.
Figure 5: Template DNA strand segregation in dividing satellite cells in vivo.
Figure 6: Niche-independent template DNA strand segregation in cultured satellite cells.
Figure 7: Template DNA strands and Numb cosegregate to one daughter cell during mitosis.

Similar content being viewed by others

References

  1. Zammit, P. & Beauchamp, J. The skeletal muscle satellite cell: stem cell or son of stem cell? Differentiation 68, 193–204 (2001).

    Article  CAS  Google Scholar 

  2. Collins, C. A. et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122, 289–301 (2005).

    Article  CAS  Google Scholar 

  3. Tajbakhsh, S. Skeletal muscle stem and progenitor cells: Reconciling genetics and lineage. Exp. Cell Res. 306, 364–372 (2005).

    Article  CAS  Google Scholar 

  4. Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530 (1998).

    Article  CAS  Google Scholar 

  5. LaBarge, M. A. & Blau, H. M. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111, 589–601 (2002).

    Article  CAS  Google Scholar 

  6. Asakura, A., Seale, P., Girgis-Gabardo, A. & Rudnicki, M. A. Myogenic specification of side population cells in skeletal muscle. J. Cell Biol. 159, 123–134 (2002).

    Article  CAS  Google Scholar 

  7. Camargo, F. D., Green, R., Capetanaki, Y., Jackson, K. A. & Goodell, M. A. Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nature Med. 9, 1520–1527 (2003).

    Article  CAS  Google Scholar 

  8. Kassar-Duchossoy, L. et al. Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev. 19, 1426–1431 (2005).

    Article  CAS  Google Scholar 

  9. Mikkers, H. & Frisen, J. Deconstructing stemness. EMBO J. 24, 2715–2719 (2005).

    Article  CAS  Google Scholar 

  10. Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell 116, 769–778 (2004).

    Article  CAS  Google Scholar 

  11. Roegiers, F. & Jan, Y. N. Asymmetric cell division. Curr. Opin. Cell Biol. 16, 195–205 (2004).

    Article  CAS  Google Scholar 

  12. Betschinger, J. & Knoblich, J. A. Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr. Biol. 14, R674–R685 (2004).

    Article  CAS  Google Scholar 

  13. Uemura, T., Shepherd, S., Ackerman, L., Jan, L. Y. & Jan, Y. N. numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58, 349–360 (1989).

    Article  CAS  Google Scholar 

  14. Rhyu, M. S., Jan, L. Y. & Jan, Y. N. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76, 477–491 (1994).

    Article  CAS  Google Scholar 

  15. Ruiz Gomez, M. & Bate, M. Segregation of myogenic lineages in Drosophila requires numb. Development 124, 4857–4866 (1997).

    CAS  PubMed  Google Scholar 

  16. Carmena, A., Murugasu-Oei, B., Menon, D., Jimenez, F. & Chia, W. Inscuteable and numb mediate asymmetric muscle progenitor cell divisions during Drosophila myogenesis. Genes Dev. 12, 304–315 (1998).

    Article  CAS  Google Scholar 

  17. Petersen, P. H., Zou, K., Hwang, J. K., Jan, Y. N. & Zhong, W. Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature 419, 929–934 (2002).

    Article  CAS  Google Scholar 

  18. Bhalerao, S., Berdnik, D., Torok, T. & Knoblich, J. A. Localization-dependent and -independent roles of numb contribute to cell-fate specification in Drosophila. Curr. Biol. 15, 1583–1590 (2005).

    Article  CAS  Google Scholar 

  19. Cayouette, M., Raff, M., Koster, R. W. & Fraser, S. E. Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals. Nature Neurosci. 5, 1265–1269 (2002).

    Article  CAS  Google Scholar 

  20. Conboy, I. M. & Rando, T. A. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev. Cell 3, 397–409 (2002).

    Article  CAS  Google Scholar 

  21. Wakamatsu, Y., Maynard, T. M., Jones, S. U. & Weston, J. A. NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron 23, 71–81 (1999).

    Article  CAS  Google Scholar 

  22. Zhong, W. Diversifying neural cells through order of birth and asymmetry of division. Neuron 37, 11–14 (2003).

    Article  CAS  Google Scholar 

  23. Verdi, J. M. et al. Distinct human NUMB isoforms regulate differentiation vs. proliferation in the neuronal lineage. Proc. Natl Acad. Sci. USA 96, 10472–10476 (1999).

    Article  CAS  Google Scholar 

  24. Spana, E. P. & Doe, C. Q. Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron 17, 21–26 (1996).

    Article  CAS  Google Scholar 

  25. Zhong, W., Feder, J. N., Jiang, M. M., Jan, L. Y. & Jan, Y. N. Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17, 43–53 (1996).

    Article  CAS  Google Scholar 

  26. Santolini, E. et al. Numb is an endocytic protein. J. Cell Biol. 151, 1345–1352 (2000).

    Article  CAS  Google Scholar 

  27. Hutterer, A. & Knoblich, J. A. Numb and α-Adaptin regulate Sanpodo endocytosis to specify cell fate in Drosophila external sensory organs. EMBO Rep. 6, 836–842 (2005).

    Article  CAS  Google Scholar 

  28. Chang, P. & Stearns, T. δ-tubulin and ε-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function. Nature Cell Biol. 2, 30–35 (2000).

    Article  CAS  Google Scholar 

  29. Rambhatla, L. et al. Cellular Senescence: Ex Vivo p53-Dependent Asymmetric Cell Kinetics. J. Biomed. Biotechnol. 1, 28–37 (2001).

    Article  CAS  Google Scholar 

  30. Morris, R. J. & Potten, C. S. Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. J. Invest. Dermatol. 112, 470–475 (1999).

    Article  CAS  Google Scholar 

  31. Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T. T. & Lavker, R. M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451–461 (2000).

    Article  CAS  Google Scholar 

  32. Potten, C. S., Hume, W. J., Reid, P. & Cairns, J. The segregation of DNA in epithelial stem cells. Cell 15, 899–906 (1978).

    Article  CAS  Google Scholar 

  33. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  Google Scholar 

  34. Tajbakhsh, S., Rocancourt, D. & Buckingham, M. Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature 384, 266–270 (1996).

    Article  CAS  Google Scholar 

  35. Beauchamp, J. R. et al. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J. Cell Biol. 151, 1221–1234 (2000).

    Article  CAS  Google Scholar 

  36. Seale, P. et al. Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777–786 (2000).

    Article  CAS  Google Scholar 

  37. Sherwood, R. I. et al. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119, 543–554 (2004).

    Article  CAS  Google Scholar 

  38. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).

    Article  CAS  Google Scholar 

  39. Potten, C. S., Owen, G. & Booth, D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J. Cell Sci. 115, 2381–2388 (2002).

    CAS  PubMed  Google Scholar 

  40. Smith, G. H. Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development 132, 681–687 (2005).

    Article  CAS  Google Scholar 

  41. Karpowicz, P. et al. Support for the immortal strand hypothesis: neural stem cells partition DNA asymmetrically in vitro. J. Cell Biol. 170, 721–732 (2005).

    Article  CAS  Google Scholar 

  42. Ogino, H. et al. The human MYOD1 transgene is suppressed by 5-bromodeoxyuridine in mouse myoblasts. J. Biochem. 132, 953–959 (2002).

    Article  CAS  Google Scholar 

  43. Bischoff, R. & Holtzer, H. Inhibition of myoblast fusion after one round of DNA synthesis in 5-bromodeoxyuridine. J. Cell Biol. 44, 134–150 (1970).

    Article  CAS  Google Scholar 

  44. Motoyama, N. & Naka, K. DNA damage tumor suppressor genes and genomic instability. Curr. Opin. Genet. Dev. 14, 11–16 (2004).

    Article  CAS  Google Scholar 

  45. Merok, J. R., Lansita, J. A., Tunstead, J. R. & Sherley, J. L. Cosegregation of chromosomes containing immortal DNA strands in cells that cycle with asymmetric stem cell kinetics. Cancer Res. 62, 6791–6795 (2002).

    CAS  PubMed  Google Scholar 

  46. Cairns, J. Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc. Natl Acad. Sci. USA 99, 10567–10570 (2002).

    Article  CAS  Google Scholar 

  47. Kuroki, T. & Murakami, Y. Random segregation of DNA strands in epidermal basal cells. Jp.n J. Cancer Res. 80, 637–642 (1989).

    CAS  Google Scholar 

  48. Reugels, A. M., Boggetti, B., Scheer, N. & Campos-Ortega, J. A. Asymmetric localization of Numb:EGFP in dividing neuroepithelial cells during neurulation in Danio rerio. Dev. Dyn. 235, 934–948 (2006).

    Article  CAS  Google Scholar 

  49. Petersen, P. H., Tang, H., Zou, K. & Zhong, W. The enigma of the numb–Notch relationship during mammalian embryogenesis. Dev. Neurosci. 28, 156–168 (2006).

    Article  CAS  Google Scholar 

  50. Tajbakhsh, S., Rocancourt, D., Cossu, G. & Buckingham, M. Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89, 127–138 (1997).

    Article  CAS  Google Scholar 

  51. Kassar-Duchossoy, L. et al. Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431, 466–471 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Potten, T. Partridge, F. Schweisguth, W. Zhong, and members of the Tajbakhsh lab for helpful comments, G. Cossu, J. Epstein, B. Mateescu O. Puijalon and S. Soddu for reagents. We also thank S. Shorte, P. Roux, E. Perret and M. Marchand from the Pasteur Imaging Center for their support. This work was funded by grants from the Pasteur Institute, Association Française contre les Myopathies (AFM), Association pour la Recherche sur le Cancer (ARC), Pasteur GPH 'Cellules Souches' programme, MyoRes (EU Framework 6 project LSHG-CT-2004-511978) and EuroStemCell (EU Framework 6 project LHSB-CT-2003-503005).u

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahragim Tajbakhsh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2 and S3 (PDF 3582 kb)

Supplementary Information

Supplementary Movie S1 (AVI 86 kb)

Supplementary Information

Supplementary Movie S2 (AVI 701 kb)

Supplementary Information

Supplementary Movie S3 (AVI 64 kb)

Supplementary Information

Supplementary Movie S4 (AVI 471 kb)

Supplementary Information

Supplementary Movie S5 (AVI 1223 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinin, V., Gayraud-Morel, B., Gomès, D. et al. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol 8, 677–682 (2006). https://doi.org/10.1038/ncb1425

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1425

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing