Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells

Abstract

Blimp1, a transcriptional repressor, has a crucial role in the specification of primordial germ cells (PGCs) in mice at embryonic day 7.5 (E7.5)1,2. This SET–PR domain protein can form complexes with various chromatin modifiers in a context-dependent manner3,4. Here, we show that Blimp1 has a novel interaction with Prmt5, an arginine-specific histone methyltransferase, which mediates symmetrical dimethylation of arginine 3 on histone H2A and/or H4 tails (H2A/H4R3me2s). Prmt5 has been shown to associate with Tudor, a component of germ plasm in Drosophila melanogaster5. Blimp1–Prmt5 colocalization results in high levels of H2A/H4 R3 methylation in PGCs at E8.5. However, at E11.5, Blimp1–Prmt5 translocates from the nucleus to the cytoplasm, resulting in the loss of H2A/H4 R3 methylation at the time of extensive epigenetic reprogramming of germ cells6. Subsequently, Dhx38, a putative target of the Blimp1–Prmt5 complex, is upregulated. Interestingly, expression of Dhx38 is also seen in pluripotent embryonic germ cells that are derived from PGCs when Blimp1 expression is lost. Our study demonstrates that Blimp1 is involved in a novel transcriptional regulatory complex in the mouse germ-cell lineage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunoprecipitated mouse Blimp1 complex exhibits an arginine methyltransferase activity.
Figure 2: Overlapping expression of Blimp1 and Prmt5 in germ cells leads to specific pattern of H2A/H4R3me.
Figure 3: In vivo identification of Blimp1–Prmt5 binding elements within the genomic locus of Dhx38.
Figure 4: Dhx38 expression is upregulated in germ cells following translocation of Blimp1 and Prmt5 from the nucleus to the cytoplasm, resulting in a decrease in the levels of H2A/H4R3me2s modification.
Figure 5: Analysis of Blimp1, Prmt5 and Dhx38 in pluripotent embryonic germ and embryonic carcinoma cells (a) Immunostaining for Blimp1, Prmt5 and Dhx38 was performed on embryonic germ (EG) cells.

Similar content being viewed by others

References

  1. Ohinata, Y. et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436, 207–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Vincent, S. D. et al. The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development 132, 1315–1325 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Yu, J., Angelin-Duclos, C., Greenwood, J., Liao, J. & Calame, K. Transcriptional repression by blimp-1 (PRDI–BF1) involves recruitment of histone deacetylase. Mol. Cell. Biol. 20, 2592–2603 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gyory, I., Wu, J., Fejer, G., Seto, E. & Wright, K. L. PRDI–BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nature Immunol. 5, 299–308 (2004).

    Article  CAS  Google Scholar 

  5. Anne, J. & Mechler, B. M. Valois, a component of the nuage and pole plasm, is involved in assembly of these structures, and binds to Tudor and the methyltransferase Capsuleen. Development 132, 2167–2177 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Hajkova, P. et al. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117, 15–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Surani, M. A. et al. Mechanism of mouse germ cell specification: a genetic program regulating epigenetic reprogramming. Cold Spring Harb. Symp. Quant. Biol. 69, 1–9 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Ginsburg, M., Snow, M. H. & McLaren, A. Primordial germ cells in the mouse embryo during gastrulation. Development 110, 521–528 (1990).

    CAS  PubMed  Google Scholar 

  9. Lachner, M., O'Sullivan, R. J. & Jenuwein, T. An epigenetic road map for histone lysine methylation. J. Cell Sci. 116, 2117–2124 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Erhardt, S. et al. Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 130, 4235–4248 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779–1791 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shaffer, A. L. et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17, 51–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Ren, B., Chee, K. J., Kim, T. H. & Maniatis, T. PRDI–BF1–Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. Genes Dev. 13, 125–137 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Strahl, B. D. et al. Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr. Biol. 11, 996–1000 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, H. et al. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293, 853–857 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Pal, S., Vishwanath, S. N., Erdjument-Bromage, H., Tempst, P. & Sif, S. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol. Cell. Biol. 24, 9630–9645 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bedford, M. T. & Richard, S. Arginine methylation an emerging regulator of protein function. Mol. Cell 18, 263–272 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y. et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306, 279–283 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Seki, Y. et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev. Biol. 278, 440–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Weinmann, A. S., Bartley, S. M., Zhang, T., Zhang, M. Q. & Farnham, P. J. Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol. Cell. Biol. 21, 6820–6832 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oberley, M. J., Inman, D. R. & Farnham, P. J. E2F6 negatively regulates BRCA1 in human cancer cells without methylation of histone H3 on lysine 9. J. Biol. Chem. 278, 42466–42476 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Graham, P. L. & Kimble, J. The mog-1 gene is required for the switch from spermatogenesis to oogenesis in Caenorhabditis elegans. Genetics 133, 919–931 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuo, T. C. & Calame, K. L. B lymphocyte-induced maturation protein (Blimp)-1, IFN regulatory factor (IRF)-1, and IRF-2 can bind to the same regulatory sites. J. Immunol. 173, 5556–5563 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Fabbrizio, E. et al. Negative regulation of transcription by the type II arginine methyltransferase PRMT5. EMBO Rep. 3, 641–645 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sarmento, O. F. et al. Dynamic alterations of specific histone modifications during early murine development. J. Cell Sci. 117, 4449–4459 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Cote, J. & Richard, S. Tudor domains bind symmetrical dimethylated arginines. J. Biol. Chem. 13, 13 (2005).

    Google Scholar 

  30. Saitou, M., Barton, S. C. & Surani, M. A. A molecular programme for the specification of germ cell fate in mice. Nature 418, 293–300 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are most grateful to M. E. T. Padilla for thoughtful discussions and also for advice concerning the ChIP cloning. We thank S.J. Jeffries for help with the bioinformatics and C. Lee for help with animals and dissection of embryos. We thank A. Brehm, K. Calame, W. Herr and T. Nakano for providing reagents; and L. Schaeffer and E. Goillot for critical reading of the manuscript. K.A. was a recipient of a Marie Curie (PRZ/OO4/RG32856) and a Newton Trust (PRZ/008/RG38647) fellowship, and U.C.L was supported by a Wellcome Trust PhD studentship. This work was funded by grants from the Cancer Research UK to T.K. and by the Wellcome Trust to M.A.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Azim Surani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3 and S4 (PDF 728 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ancelin, K., Lange, U., Hajkova, P. et al. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nat Cell Biol 8, 623–630 (2006). https://doi.org/10.1038/ncb1413

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1413

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing