Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication

Abstract

Ubiquitin-mediated proteolysis of the replication licensing factor Cdt1 (Cdc10-dependent transcript 1) in S phase is a key mechanism that limits DNA replication to a single round per cell cycle in metazoans1,2,3,4,5,6. In Xenopus egg extracts, Cdt1 is destroyed on chromatin during DNA replication1. Here, we report that replication-dependent proteolysis of Cdt1 requires its interaction with proliferating cell nuclear antigen (PCNA), a homotrimeric processivity factor for DNA polymerases7. Cdt1 binds to PCNA through a consensus PCNA-interaction motif that is conserved in Cdt1 of all metazoans, and removal of PCNA from egg extracts inhibits replication-dependent Cdt1 destruction. Mutation of the PCNA-interaction motif yields a stabilized Cdt1 protein that induces re-replication. DDB1, a component of the Cul4 E3 ubiquitin ligase that mediates human Cdt1 proteolysis in response to DNA damage8, is also required for replication-dependent Cdt1 destruction. Cdt1 and DDB1 interact in extracts, and DDB1 chromatin loading is dependent on the binding of Cdt1 to PCNA, which indicates that PCNA docking activates the pre-formed Cdt1–Cul4DDB1 ligase complex. Thus, PCNA functions as a platform for Cdt1 destruction, ensuring efficient and temporally restricted inactivation of a key cell-cycle regulator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cdt1 binds to PCNA via a conserved PIP box.
Figure 2: Replication of M13 ssDNA induces PCNA-dependent Cdt1 destruction.
Figure 3: PCNA-dependent Cdt1 destruction in LSS limits DNA replication to a single round.
Figure 4: DDB1 is required for Cdt1 destruction.
Figure 5: DDB1 is recruited to chromatin by Cdt1.

Similar content being viewed by others

References

  1. Arias, E. E. & Walter, J. C. Replication-dependent destruction of Cdt1 limits DNA replication to a single round per cell cycle in Xenopus egg extracts. Genes Dev. 19, 114–126 (2005).

    Article  CAS  Google Scholar 

  2. Li, A. & Blow, J. J. Cdt1 downregulation by proteolysis and geminin inhibition prevents DNA re-replication in Xenopus. EMBO J. 24, 395–404 (2005).

    Article  CAS  Google Scholar 

  3. Maiorano, D., Krasinska, L., Lutzmann, M. & Mechali, M. Recombinant Cdt1 induces rereplication of G2 nuclei in Xenopus egg extracts. Curr. Biol. 15, 146–153 (2005).

    Article  CAS  Google Scholar 

  4. Thomer, M., May, N. R., Aggarwal, B. D., Kwok, G. & Calvi, B. R. Drosophila double-parked is sufficient to induce re-replication during development and is regulated by cyclin E/CDK2. Development 131, 4807–4818 (2004).

    Article  CAS  Google Scholar 

  5. Yoshida, K., Takisawa, H. & Kubota, Y. Intrinsic nuclear import activity of geminin is essential to prevent re-initiation of DNA replication in Xenopus eggs. Genes Cells 10, 63–73 (2005).

    Article  CAS  Google Scholar 

  6. Zhong, W., Feng, H., Santiago, F. E. & Kipreos, E. T. CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature 423, 885–889 (2003).

    Article  CAS  Google Scholar 

  7. Maga, G. & Hubscher, U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J. Cell Sci. 116, 3051–3060 (2003).

    Article  CAS  Google Scholar 

  8. Hu, J., McCall, C. M., Ohta, T. & Xiong, Y. Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage. Nature Cell Biol. 6, 1003–1009 (2004).

    Article  CAS  Google Scholar 

  9. Dutta, A. & Bell, S. P. Initiation of DNA replication in eukaryotic cells. Annu. Rev. Cell. Dev. Biol. 13, 293–332 (1997).

    Article  CAS  Google Scholar 

  10. Diffley, J. F. Once and only once upon a time: specifying and regulating origins of DNA replication in eukaryotic cells. Genes Dev. 10, 2819–2830 (1996).

    Article  CAS  Google Scholar 

  11. Tada, S., Li, A., Maiorano, D., Mechali, M. & Blow, J. J. Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nature Cell Biol. 3, 107–113 (2001).

    Article  CAS  Google Scholar 

  12. Wohlschlegel, J. A. et al. Inhibition of eukaryotic DNA replication by geminin binding to cdt1. Science 290, 2309–2312 (2000).

    Article  CAS  Google Scholar 

  13. Nishitani, H., Taraviras, S., Lygerou, Z. & Nishimoto, T. The human licensing factor for DNA replication Cdt1 accumulates in G1 and is destabilized after initiation of S-phase. J. Biol. Chem. 276, 44905–44911 (2001).

    Article  CAS  Google Scholar 

  14. Higa, L. A., Mihaylov, I. S., Banks, D. P., Zheng, J. & Zhang, H. Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint. Nature Cell Biol. 5, 1008–1015 (2003).

    Article  CAS  Google Scholar 

  15. Kondo, T. et al. Rapid degradation of Cdt1 upon UV-induced DNA damage is mediated by SCFSkp2 complex. J. Biol. Chem. 279, 27315–27319 (2004).

    Article  CAS  Google Scholar 

  16. Arias, E. E. & Walter, J. C. Initiation of DNA replication in xenopus egg extracts. Front. Biosci. 9, 3029–3045 (2004).

    Article  CAS  Google Scholar 

  17. Hubscher, U., Maga, G. & Spadari, S. Eukaryotic DNA polymerases. Annu. Rev. Biochem. 71, 133–163 (2002).

    Article  CAS  Google Scholar 

  18. Nishitani, H., Lygerou, Z. & Nishimoto, T. Proteolysis of DNA replication licensing factor Cdt1 in S-phase is performed independently of geminin through its N-terminal region. J. Biol. Chem. 279, 30807–30816 (2004).

    Article  CAS  Google Scholar 

  19. Li, X., Zhao, Q., Liao, R., Sun, P. & Wu, X. The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J. Biol. Chem. 278, 30854–30858 (2003).

    Article  CAS  Google Scholar 

  20. Takeda, D. Y., Parvin, J. D. & Dutta, A. Degradation of Cdt1 during S phase is Skp2-independent and is required for efficient progression of mammalian cells through S phase. J. Biol. Chem. 280, 23416–23423 (2005).

    Article  CAS  Google Scholar 

  21. Mattock, H. et al. Use of peptides from p21 (Waf1/Cip1) to investigate PCNA function in Xenopus egg extracts. Exp. Cell Res. 265, 242–251 (2001).

    Article  CAS  Google Scholar 

  22. Shibahara, K. & Stillman, B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96, 575–585 (1999).

    Article  CAS  Google Scholar 

  23. Edwards, M. C. et al. MCM2-7 complexes bind chromatin in a distributed pattern surrounding ORC in Xenopus egg extracts. J. Biol. Chem. 277, 33049–33057 (2002).

    Article  CAS  Google Scholar 

  24. Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin-RING ubiquitin ligases. Natuer Rev. Mol. Cell Biol. 6, 9–20 (2005).

    Article  CAS  Google Scholar 

  25. Claycomb, J. M., MacAlpine, D. M., Evans, J. G., Bell, S. P. & Orr-Weaver, T. L. Visualization of replication initiation and elongation in Drosophila. J. Cell Biol. 159, 225–236 (2002).

    Article  CAS  Google Scholar 

  26. Gomes, X. V. & Burgers, P. M. Two modes of FEN1 binding to PCNA regulated by DNA. EMBO J. 19, 3811–3821 (2000).

    Article  CAS  Google Scholar 

  27. May, N. R., Thomer, M., Murnen, K. F. & Calvi, B. R. The origin binding protein Double parked, and its inhibitor geminin, increase in response to replication stress. J. Cell Sci. 108, 4207–4717 (2005).

    Article  Google Scholar 

  28. Chuang, L. C. & Yew, P. R. Proliferating cell nuclear antigen recruits cyclin-dependent kinase inhibitor Xic1 to DNA and couples its proteolysis to DNA polymerase switching. J. Biol. Chem. 280, 35299–35309 (2005).

    Article  CAS  Google Scholar 

  29. Liu, E., Li, X., Yan, F., Zhao, Q. & Wu, X. Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J. Biol. Chem. 279, 17283–17288 (2004).

    Article  CAS  Google Scholar 

  30. Su'etsugu, M., Shimuta, T. R., Ishida, T., Kawakami, H. & Katayama, T. Protein associations in DnaA-ATP hydrolysis mediated by the Hda-replicase clamp complex. J. Biol. Chem. 280, 6528–6536 (2005).

    Article  CAS  Google Scholar 

  31. Mimura, S., Masuda, T., Matsui, T. & Takisawa, H. Central role for cdc45 in establishing an initiation complex of DNA replication in Xenopus egg extracts. Genes Cells 5, 439–452 (2000).

    Article  CAS  Google Scholar 

  32. Walter, J., Sun, L. & Newport, J. Regulated chromosomal DNA replication in the absence of a nucleus. Mol. Cell 1, 519–529 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Takahashi for numerous helpful suggestions, and W. Harper and D. Finley for insightful comments on the manuscript. We also thank C. Cvetic and T. Prokhorova for preparation of the Orc2 and Cdt1 antisera, and J. Pascal and T. Ellenberger for providing recombinant PCNA. E.E.A is an Howard Hughes Medical Institute pre-doctoral fellow. This work was supported by an American Cancer Society grant (106201) to J.C.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes C. Walter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 1296 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arias, E., Walter, J. PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nat Cell Biol 8, 84–90 (2006). https://doi.org/10.1038/ncb1346

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1346

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing