Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cohesin SMC1β is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination

Abstract

Sister chromatid cohesion ensures the faithful segregation of chromosomes in mitosis and in both meiotic divisions1,2,3,4. Meiosis-specific components of the cohesin complex, including the recently described SMC1 isoform SMC1β5, were suggested to be required for meiotic sister chromatid cohesion and DNA recombination. Here we show that SMC1β-deficient mice of both sexes are sterile. Male meiosis is blocked in pachytene; female meiosis is highly error-prone but continues until metaphase II. Prophase axial elements (AEs) are markedly shortened, chromatin extends further from the AEs, chromosome synapsis is incomplete, and sister chromatid cohesion in chromosome arms and at centromeres is lost prematurely. In addition, crossover-associated recombination foci are absent or reduced, and meiosis-specific perinuclear telomere arrangements are impaired. Thus, SMC1β has a key role in meiotic cohesion, the assembly of AEs, synapsis, recombination, and chromosome movements.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunofluorescence labelling of spread spermatocytes.
Figure 2: Chromatin compaction and telomere arrangement.
Figure 3: Recombination-related proteins in Smc1β+/+ and Smc1β−/− spermatocytes.
Figure 4: Analysis of OA-treated spermatocytes.
Figure 5: Multiple defects of female meiosis in Smc1β−/− mice.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Hirano, T. The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev. 16, 399–414 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Jessberger, R. The many functions of SMC proteins in chromosome dynamics. Nature Rev. Mol. Cell. Biol. 3, 767–778 (2002).

    Article  CAS  Google Scholar 

  4. Hagstrom, K.A. & Meyer, B.J. Condensin and cohesin: more than chromosome compactor and glue. Nature Rev. Genet. 4, 520–534 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Revenkova, E., Eijpe, M., Heyting, C., Gross, B. & Jessberger, R. Novel meiosis-specific isoform of mammalian SMC1. Mol. Cell. Biol. 21, 6984–6998 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rieder, C.L. & Cole, R. Chromatid cohesion during mitosis: lessons from meiosis. J. Cell Sci. 112, 2607–2613 (1999).

    CAS  PubMed  Google Scholar 

  7. van Heemst, D. & Heyting, C. Sister chromatid cohesion and recombination in meiosis. Chromosoma 109, 10–26 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Petronczki, M., Siomos, M.F. & Nasmyth, K. Un ménage à quatre: the molecular biology of chromosome segregation in meiosis. Cell 112, 423–440 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Page, S.L. & Hawley, R.S. Chromosome choreography: the meiotic ballet. Science 301, 785–789 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Krawchuk, M.D., DeVeaux, L.C. & Wahls, W.P. Meiotic chromosome dynamics dependent upon the rec8+, rec10+ and rec11+ genes of the fission yeast Schizosaccharomyces pombe. Genetics 153, 57–68 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. DeVeaux, L.C., Hoagland, N.A. & Smith, G.R. Seventeen complementation groups of mutations decreasing meiotic recombination in Schizosaccharomyces pombe. Genetics 130, 251–262 (1992).

    CAS  PubMed Central  Google Scholar 

  12. Prieto, I. et al. Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I. Nature Cell Biol. 3, 761–766 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Drabent, B., Bode, C., Bramlage, B. & Doenecke, D. Expression of the mouse testicular histone gene H1t during spermatogenesis. Histochem. Cell. Biol. 106, 247–251 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Bellve, A.R. et al. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J. Cell Biol. 74, 68–85 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eijpe, M., Heyting, C., Gross, B. & Jessberger, R. Association of mammalian SMC1 and SMC3 proteins with meiotic chromosomes and synaptonemal complexes. J Cell Sci. 113, 673–682 (2000).

    CAS  PubMed  Google Scholar 

  16. Eijpe, M., Offenberg, H., Jessberger, R., Revenkova, E. & Heyting, C. Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1β and SMC3. J. Cell Biol. 160, 657–670 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pelttari, J. et al. A meiotic chromosomal core consisting of cohesin complex proteins recruits DNA recombination proteins and promotes synapsis in the absence of an axial element in mammalian meiotic cells. Mol. Cell. Biol. 21, 5667–5677 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kleckner, N., Storlazzi, A. & Zickler, D. Coordinate variation in meiotic pachytene SC length and total crossover/chiasma frequency under conditions of constant DNA length. Trends Genet. 19, 623–628 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Guacci, V., Koshland, D. & Strunnikov, A. A direct link between sister chromatid cohesion and chromosome condensation revealed through analysis of MCD1 in S. cerevisiae. Cell 91, 47–57 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scherthan, H. et al. Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J. Cell Biol. 134, 1109–1125 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Scherthan, H. et al. Mammalian meiotic telomeres: protein composition and their redistribution in relation to nuclear pores. Mol. Biol. Cell 11, 4189–4203 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Anderson, L.K., Reeves, A., Webb, L.M. & Ashley, T. Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics 151, 1569–1579 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Moens, P.B. et al. The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA–DNA interactions without reciprocal recombination. J. Cell Sci. 115, 1611–1622 (2001).

    Google Scholar 

  24. Moens, P.B., Pearlman, R.E., Heng, H.H. & Traut, W. Chromosome cores and chromatin at meiotic prophase. Curr. Top. Dev. Biol. 37, 241–262 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Mahadevaiah, S.K. et al. Recombinational DNA double-strand breaks in mice precede synapsis. Nature Genet. 27, 271–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Hamer, G. et al. DNA double-strand breaks and γ-H2AX signaling in the testis. Biol. Reprod. 68, 628–634 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Moens, P.B. et al. The association of ATR protein with mouse meiotic chromosome cores. Chromosoma 108, 95–102 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Wiltshire, T., Park, C., Caldwell, K.A. & Handel, M.A. Induced premature G2/M-phase transition in pachytene spermatocytes includes events unique to meiosis. Dev. Biol. 169, 57–67 (1995).

    Article  Google Scholar 

  29. Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nature Rev. Genet. 2, 280–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Prieto, I. et al. STAG2 and Rad21 mammalian mitotic cohesins are implicated in meiosis. EMBO Rep. 3, 543–550 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, H. et al. A new role for the mitotic RAD21/SCC1 cohesin in meiotic chromosome cohesion and segregation in the mouse. EMBO Rep. 5, 378–384 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meuwissen, R.L. et al. A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes. EMBO J. 11, 5091–5100 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peters, A.H., Plug, A.W., van Vugt, M.J. & De Boer, P. A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res. 5, 66–68 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Tarkowski, A.K. An air drying method for chromosome preparations from mouse eggs. Cytogenetics 5, 394–400 (1966).

    Article  Google Scholar 

  35. Koehler, K.E., Cherry, J.P., Lynn, A.L., Hunt, P.A. & Hassold, T.J. Genetic control of mammalian meiotic recombination. I. Variation in exchange frequencies among males from inbred mouse strains. Genetics 162, 297–306 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Oakberg, E.F. A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. Am. J. Anat. 99, 391–413 (1956).

    Article  CAS  PubMed  Google Scholar 

  37. Russell, L.D., Ettlin, R.A., Hikim, A.P.S. & Clegg, E.D. Histological and Histopathological Evaluations of the Testis (Cache River Press, Clearwater, Florida, 1990).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Mount Sinai Mouse Genetics Shared Research Facility (K. Kelley), funded by a grant from the NIH/NCI (R24CA88302). We thank A. Pastink, J.-M. Peters, T. de Lange, P. de Boer, P. Cohen, P. Moens and T. Ashley for generous gifts of antibodies; A. Firooznia for the preparation of recombinant STAG3 antigen and anti-STAG3 antibody; and E. de Boer for the preparation of recombinant MLH1 antigen and anti-MLH1 antibody. This work was supported by a grant from the NIH (GM62517) to R.J., a grant from the DFG (Sche350/8-4) to H.S., a grant from the NIH (HD37502) to P.A.H., and a grant from the EU (contract no. QLK3-2000-00365) to C.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Jessberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revenkova, E., Eijpe, M., Heyting, C. et al. Cohesin SMC1β is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat Cell Biol 6, 555–562 (2004). https://doi.org/10.1038/ncb1135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1135

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing