Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly

Abstract

Cell migration is a complex, highly regulated process that involves the continuous formation and disassembly of adhesions (adhesion turnover). Adhesion formation takes place at the leading edge of protrusions, whereas disassembly occurs both at the cell rear and at the base of protrusions. Despite the importance of these processes in migration, the mechanisms that regulate adhesion formation and disassembly remain largely unknown. Here we develop quantitative assays to measure the rate of incorporation of molecules into adhesions and the departure of these proteins from adhesions. Using these assays, we show that kinases and adaptor molecules, including focal adhesion kinase (FAK), Src, p130CAS, paxillin, extracellular signal-regulated kinase (ERK) and myosin light-chain kinase (MLCK) are critical for adhesion turnover at the cell front, a process central to migration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FAK and zyxin localize with paxillin (Pax) in dynamic adhesions that turn over.
Figure 2: Quantitative analysis of adhesion turnover.
Figure 3: Adhesion turnover and protrusive activity are impaired in FAK-null fibroblasts.

Similar content being viewed by others

References

  1. Lauffenburger, D.A. & Horwitz, A.F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  2. Webb, D.J., Parsons, J.T. & Horwitz, A.F. Adhesion assembly, disassembly and turnover in migrating cells — over and over and over again. Nature Cell Biol. 4, E97–E100 (2002).

    Article  CAS  Google Scholar 

  3. Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).

    Article  CAS  Google Scholar 

  4. Klinghoffer, R.A., Sachsenmaier, C., Cooper, J.A. & Soriano, P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459–2471 (1999).

    Article  CAS  Google Scholar 

  5. Fincham, V.J. & Frame, M.C. The catalytic activity of Src is dispensable for translocation to focal adhesions but controls the turnover of these structures during cell motility. EMBO J. 17, 81–92 (1998).

    Article  CAS  Google Scholar 

  6. Yu, D.-H., Qu, C.-K., Henegariu, O., Lu, X. & Feng, G.-S. Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J. Biol. Chem. 273, 21125–21131 (1998).

    Article  CAS  Google Scholar 

  7. Angers-Loustau, A. et al. Protein tyrosine phosphatase-PEST regulates focal adhesion disassembly, migration, and cytokinesis in fibroblasts. J. Cell Biol. 144, 1019–1031 (1999).

    Article  CAS  Google Scholar 

  8. Bellis, S.L., Miller, J.T. & Turner, C.E. Characterization of tyrosine phosphorylation of paxillin in vitro by focal adhesion kinase. J. Biol. Chem. 270, 17437–17441 (1995).

    Article  CAS  Google Scholar 

  9. Schaller, M.D. & Parsons, J.T. pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk. Mol. Cell. Biol. 15, 2635–2645 (1995).

    Article  CAS  Google Scholar 

  10. Cary, L.A., Han, D.C., Polte, T.R., Hanks, S.K. & Guan, J.-L. Identification of p130CAS as a mediator of focal adhesion kinase-promoted cell migration. J. Cell Biol. 140, 211–221 (1998).

    Article  CAS  Google Scholar 

  11. Hagel, M. et al. The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol. Cell. Biol. 22, 901–915 (2002).

    Article  CAS  Google Scholar 

  12. Honda, H., Nakamoto, T., Sakai, R. & Hirai, H. p130(Cas), an assembling molecule of actin filaments, promotes cell movement, cell migration, and cell spreading in fibroblasts. Biochem. Biophys. Res. Commun. 262, 25–30 (1999).

    Article  CAS  Google Scholar 

  13. Honda, H. et al. Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacing p130Cas. Nature Genet. 19, 361–365 (1998).

    Article  CAS  Google Scholar 

  14. Laukaitis, C.M., Webb, D.J., Donais, K. & Horwitz, A.F. Differential dynamics of α5 integrin, paxillin, and α-actinin during formation and disassembly of adhesions in migrating cells. J. Cell Biol. 153, 1427–1440 (2001).

    Article  CAS  Google Scholar 

  15. Schaller, M.D. et al. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol. Cell. Biol. 14, 1680–1688 (1994).

    Article  CAS  Google Scholar 

  16. Chen, H.-C., Appeddu, P.A., Isoda, H. & Guan, J.-L. Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J. Biol. Chem. 271, 26329–26334 (1996).

    Article  CAS  Google Scholar 

  17. Schlaepfer, D.D., Hauck, C.R. & Sieg, D.J. Signaling through focal adhesion kinase. Prog. Biophys. Mol. Biol. 71, 435–478 (1999).

    Article  CAS  Google Scholar 

  18. Vuori, K., Hirai, H., Aizawa, S. & Ruoslahti, E. Introduction of p130cas signaling complex formation upon integrin-mediated cell adhesion: a role for Src family kinases. Mol. Cell. Biol. 16, 2606–2613 (1996).

    Article  CAS  Google Scholar 

  19. Turner, C.E. Paxillin and focal adhesion signalling. Nature Cell Biol. 2, E231–E236 (2000).

    Article  CAS  Google Scholar 

  20. Turner, C.E. et al. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankryin repeat, ARF-GAP protein: a role in cytoskeletal remodeling. J. Cell Biol. 145, 851–863 (1999).

    Article  CAS  Google Scholar 

  21. Brown, M.C., Perrotta, J.A. & Turner, C.E. Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. J. Cell Biol. 135, 1109–1123 (1996).

    Article  CAS  Google Scholar 

  22. Thomas, J.W. et al. The role of focal adhesion kinase binding in the regulation of tyrosine phosphorylation of paxillin. J. Biol. Chem. 274, 36684–36692 (1999).

    Article  CAS  Google Scholar 

  23. Burridge, K., Turner, C.E. & Romer, L.H. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J. Cell Biol. 119, 893–903 (1992).

    Article  CAS  Google Scholar 

  24. Petit, V. et al. Phosphorylation of tyrosine residues 31 and 118 on paxillin regulates cell migration through an association with CRK in NBT-II cells. J. Cell Biol. 148, 957–969 (2000).

    Article  CAS  Google Scholar 

  25. Kraynov, V.S. et al. Localized Rac activation dynamics visualized in living cells. Science 290, 333–337 (2000).

    Article  CAS  Google Scholar 

  26. Ridley, A.J. Rho GTPases and cell migration. J. Cell Sci. 114, 2713–2722 (2001).

    CAS  PubMed  Google Scholar 

  27. Ishibe, S., Joly, D., Zhu, X. & Cantley, L.G. Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol. Cell 12, 1275–1285 (2003).

    Article  CAS  Google Scholar 

  28. Slack-Davis, J.K. et al. PAK1 phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation. J. Cell Biol. 162, 281–291 (2003).

    Article  CAS  Google Scholar 

  29. Klemke, R.L. et al. Regulation of cell motility by migoten-activated protein kinase. J. Cell Biol. 137, 481–492 (1997).

    Article  CAS  Google Scholar 

  30. Zamir, E. & Geiger, B. Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114, 3583–3590 (2001).

    CAS  PubMed  Google Scholar 

  31. Fincham, V., James, M., Frame, M. & Winder, S. Active ERK/MAP kinase is targeted to newly forming cell–matrix adhesions by integrin engagement and v-Src. EMBO J. 19, 2911–2923 (2000).

    Article  CAS  Google Scholar 

  32. Crowley, E. & Horwitz, A.F. Tyrosine phosphorylation and cytosketal tension regulate the release of fibroblast adhesions. J. Cell Biol. 131, 525–537 (1995).

    Article  CAS  Google Scholar 

  33. Ren, X.D. et al. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J. Cell Sci. 113, 3673–3678 (2000).

    CAS  PubMed  Google Scholar 

  34. Chen, B.-C., Tzen, J.T., Bresnick, A.R. & Chen, H.-C. Roles of Rho-associated kinase and myosin light chain kinase in morphological and migratory defects of focal adhesion kinase-null cells. J. Biol. Chem. 277, 33857–33863 (2002).

    Article  CAS  Google Scholar 

  35. Carragher, N.O., Westhoff, M.A., Fincham, V.J., Schaller, M.D. & Frame, M.C. A novel role for FAK as a protease-targeting adaptor protein: regulation by p42 ERK and Src. Curr. Biol. 13, 1442–1450 (2003).

    Article  CAS  Google Scholar 

  36. Huttenlocher, A., Ginsberg, M.H. & Horwitz, A.F. Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity. J. Cell Biol. 134, 1551–1562 (1996).

    Article  CAS  Google Scholar 

  37. Dourdin, N. et al. Reduced cell migration and disruption of the actin cytoskeleton in calpain-deficient embryonic fibroblasts. J. Biol. Chem. 276, 48382–48388 (2001).

    Article  CAS  Google Scholar 

  38. Izaguirre, G. et al. The cytoskeletal/non-muscle isoform of α-actinin is phosphorylated on its actin-binding domain by focal adhesion kinase. J. Biol. Chem. 276, 28676–28685 (2001).

    Article  CAS  Google Scholar 

  39. Chang, J.H., Settleman, J. & Parsons, S.J. c-Src regulates the simultaneous rearrangement of actin cytoskeleton, p190RhoGAP, and p120RasGAP following epidermal growth factor stimulation. J. Cell Biol. 130, 355–368 (1995).

    Article  CAS  Google Scholar 

  40. Catling, A.D., Schaeffer, H.J., Reuter, C.W., Reddy, G.R. & Weber, M.J. A proline-rich sequence unique to MEK1 and MEK2 is required for raf binding and regulates MEK function. Mol. Cell. Biol. 15, 5214–5225 (1995).

    Article  CAS  Google Scholar 

  41. Palecek, S.P., Schmidt, C.E., Lauffenburger, D.A. & Horwitz, A.F. Integrin dynamics on the tail region of migrating fibroblasts. J. Cell Sci. 109, 941–952 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Beckerle, K. Rottner, A. Bouton, A. Hall, J. Collard, S. Parsons, M. Weber and D. Ilic for reagents and suggestions. This work was supported by NIH grants GM23244 (A.F.H.), CA40042 (J.T.P.) and GM47607 (C.E.T.) and by the University of Virginia Cancer Center. D.J.W. was supported by NIH postdoctoral training grant HD07528-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna J. Webb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures

Supplementary Fig. 1 (PDF 170 kb)

Supplementary Fig. 2

Supplementary Fig. 3

Supplementary Fig. 4

Supplementary Movie S1

Time-lapse images for Fig. 1 showing an MEF expressing paxillin-GFP. (MOV 130 kb)

Supplementary Movie S2

Time-lapse images for Fig. 1, which shows an MEF expressing paxillin-DsRed2. (MOV 149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, D., Donais, K., Whitmore, L. et al. FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6, 154–161 (2004). https://doi.org/10.1038/ncb1094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1094

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing