Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stability and association of Smoothened, Costal2 and Fused with Cubitus interruptus are regulated by Hedgehog

Abstract

The mechanisms involved in transduction of the Hedgehog (Hh) signal are of considerable interest to developmental and cancer biologists. Stabilization of the integral membrane protein Smoothened (Smo) at the plasma membrane is a crucial step in Hh signalling but the molecular events immediately downstream of Smo remain to be elucidated. We have shown previously that the transcriptional mediator Cubitus interruptus (Ci) is associated in a protein complex with at least two other proteins, the kinesin-like Costal2 (Cos2) and the serine–threonine kinase Fused (Fu). This protein complex governs the access of Ci to the nucleus. Here we show that, consequent on the stabilization of Smo, Cos2 and Fu are destabilized. Moreover, we find that the Cos2–Fu–Ci protein complex is associated with Smo in membrane fractions both in vitro and in vivo. We also show that Cos2 binding on Smo is necessary for the Hh-dependent dissociation of Ci from this complex. We propose that the association of the Cos2 protein complex with Smo at the plasma membrane controls the stability of the complex and allows Ci activation, eliciting its nuclear translocation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Destabilization of Cos2 depends on Hh signalling.
Figure 2: Cos2 is epistatic to Smo.
Figure 3: Cos2, Fu and Ci form a protein complex with Smo.
Figure 4: Cos2 binding on Smo is necessary for the Hh-dependent regulation of Ci.

Similar content being viewed by others

References

  1. Ingham, P.W. & McMahon, A.P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059–3087 (2001).

    Article  CAS  Google Scholar 

  2. Tabata, T., Eaton, S. & Kornberg, T.B. The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev. 6, 2635–2645 (1992).

    Article  CAS  Google Scholar 

  3. Lee, J.J., von Kessler, D.P., Parks, S. & Beachy, P.A. Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 71, 33–50 (1992).

    Article  CAS  Google Scholar 

  4. Dominguez, M., Brunner, M., Hafen, E. & Basler, K. Sending and receiving the hedgehog signal: control by the Drosophila Gli protein Cubitus interruptus. Science 272, 1621–1625 (1996).

    Article  CAS  Google Scholar 

  5. Ingham, P.W., Taylor, A.M. & Nakano, Y. Role of the Drosophila patched gene in positional signalling. Nature 353, 184–187 (1991).

    Article  CAS  Google Scholar 

  6. Marigo, V., Davey, R.A., Zuo, Y., Cunningham, J.M. & Tabin, C.J. Biochemical evidence that patched is the Hedgehog receptor. Nature 384, 176–179 (1996).

    Article  CAS  Google Scholar 

  7. Alcedo, J., Ayzenzon, M., Von Ohlen, T., Noll, M. & Hooper, J.E. The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 86, 221–232 (1996).

    Article  CAS  Google Scholar 

  8. van den Heuvel, M. & Ingham, P.W. smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature 382, 547–551 (1996).

    Article  CAS  Google Scholar 

  9. Chen, Y. & Struhl, G. Dual roles for patched in sequestering and transducing Hedgehog. Cell 87, 553–563 (1996).

    Article  CAS  Google Scholar 

  10. Denef, N., Neubuser, D., Perez, L. & Cohen, S.M. Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 102, 521–531 (2000).

    Article  CAS  Google Scholar 

  11. Zhu, A.J. et al. Altered localization of Drosophila Smoothened protein activates Hedgehog signal transduction. Genes Dev. 17, 1240–1252 (2003).

    Article  CAS  Google Scholar 

  12. Robbins, D.J. et al. Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell 90, 225–234 (1997).

    Article  CAS  Google Scholar 

  13. Sisson, J.C., Ho, K.S., Suyama, K. & Scott, M.P. Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell 90, 235–245 (1997).

    Article  CAS  Google Scholar 

  14. Wang, G., Amanai, K., Wang, B. & Jiang, J. Interactions with Costal2 and Suppressor of fused regulate nuclear translocation and activity of Cubitus interruptus. Genes Dev. 14, 2893–2905 (2000).

    Article  CAS  Google Scholar 

  15. Alcedo, J., Zou, Y. & Noll, M. Posttranscriptional regulation of smoothened is part of a self-correcting mechanism in the Hedgehog signaling system. Mol. Cell 6, 457–465 (2000).

    Article  CAS  Google Scholar 

  16. Ingham, P.W. et al. Patched represses the Hedgehog signalling pathway by promoting modification of the Smoothened protein. Curr. Biol. 10, 1315–1318 (2000).

    Article  CAS  Google Scholar 

  17. Therond, P. et al. Molecular organisation and expression pattern of the segment polarity gene fused of Drosophila melanogaster. Mech. Dev. 44, 65–80 (1993).

    Article  CAS  Google Scholar 

  18. Martin, V., Carrillo, G., Torroja, C. & Guerrero, I. The sterol-sensing domain of Patched protein seems to control Smoothened activity through Patched vesicular trafficking. Curr. Biol. 11, 601–607 (2001).

    Article  CAS  Google Scholar 

  19. Strigini, M. & Cohen, S.M. A Hedgehog activity gradient contributes to AP axial patterning of the Drosophila wing. Development 124, 4697–4705 (1997).

    CAS  Google Scholar 

  20. Hooper, J.E. Smoothened translates Hedgehog levels into distinct responses. Development 130, 3951–3963 (2003).

    Article  CAS  Google Scholar 

  21. Therond, P.P., Knight, J.D., Kornberg, T.B. & Bishop, J.M. Phosphorylation of the fused protein kinase in response to signaling from hedgehog. Proc. Natl Acad. Sci. USA 93, 4224–4228 (1996).

    Article  CAS  Google Scholar 

  22. Chen, C.H. et al. Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell 98, 305–316 (1999).

    Article  CAS  Google Scholar 

  23. Sasaki, H., Hui, C., Nakafuku, M. & Kondoh, H. A binding site for Gli proteins is essential for HNF-3β floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124, 1313–1322 (1997).

    CAS  PubMed  Google Scholar 

  24. Clemens, J.C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl Acad. Sci. USA 97, 6499–6503 (2000).

    Article  CAS  Google Scholar 

  25. Morfini, G., Szebenyi, G., Elluru, R., Ratner, N. & Brady, S.T. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 21, 281–293 (2002).

    Article  CAS  Google Scholar 

  26. Muller, H.A. & Wieschaus, E. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. J. Cell Biol. 134, 149–163 (1996).

    Article  CAS  Google Scholar 

  27. Monnier, V., Ho, K.S., Sanial, M., Scott, M.P. & Plessis, A. Hedgehog signal transduction proteins: contacts of the Fused kinase and Ci transcription factor with the kinesin-related protein Costal2. BMC Dev. Biol. 2, 4–13 (2002).

    Article  Google Scholar 

  28. Price, M.A., Kalderon, D. Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by glycogen synthase kinase 3 and casein kinase 1. Cell 108, 823–835 (2002).

    Article  CAS  Google Scholar 

  29. Basler, K. & Struhl, G. Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368, 208–214 (1994).

    Article  CAS  Google Scholar 

  30. Gallet, A., Rodriguez, R., Ruel, L. & Therond, P.P. Cholesterol modification of hedgehog is required for trafficking and movement, revealing an asymmetric cellular response to hedgehog. Dev. Cell 4, 191–204 (2003).

    Article  CAS  Google Scholar 

  31. Strutt, H. et al. Mutations in the sterol-sensing domain of Patched suggest a role for vesicular trafficking in Smoothened regulation. Curr. Biol. 11, 608–613 (2001).

    Article  CAS  Google Scholar 

  32. van Leeuwen, F., Samos, C.H. & Nusse, R. Biological activity of soluble wingless protein in cultured Drosophila imaginal disc cells. Nature 368, 342–344 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Le Bivic and S. Cohen for antibodies; M. van den Heuvel, K. Ho, M. Scott, K. Basler, P. Ingham, M. Gonzalez-Gaitan and I. Guerrero for fly stocks; all 'fly' members of the ISDBCR for exciting discussions about this work; and P. Léopold, J. P. Vincent, S. Eaton, A. Goldsborough and N. Tapon for comments on the manuscript. R.R. is supported by a doctoral fellowship from the French Research Ministry. This work was supported by grants from the 'Association pour la Recherche sur le Cancer', 'la Fondation de France' and the ATIPE programme of the Centre National de la Recherche Scientifique to P.P.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal P. Thérond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruel, L., Rodriguez, R., Gallet, A. et al. Stability and association of Smoothened, Costal2 and Fused with Cubitus interruptus are regulated by Hedgehog. Nat Cell Biol 5, 907–913 (2003). https://doi.org/10.1038/ncb1052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing