Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart

Abstract

Systemic gene delivery into muscle has been a major challenge for muscular dystrophy gene therapy, with capillary blood vessels posing the principle barrier and limiting vector dissemination. Previous efforts to deliver genes into multiple muscles have relied on isolated vessel perfusion or pharmacological interventions to enforce broad vector distribution. We compared the efficiency of multiple adeno-associated virus (AAV) vectors after a single injection via intraperitoneal or intravenous routes without additional intervention. We show that AAV8 is the most efficient vector for crossing the blood vessel barrier to attain systemic gene transfer in both skeletal and cardiac muscles of mice and hamsters. Serotypes such as AAV1 and AAV6, which demonstrate robust infection in skeletal muscle cells, were less effective in crossing the blood vessel barrier. Gene expression persisted in muscle and heart, but diminished in tissues undergoing rapid cell division, such as neonatal liver. This technology should prove useful for muscle-directed systemic gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Systemic gene delivery to muscle and heart of neonatal mice by different AAV serotypes via i.p. injection.
Figure 2: Systemic gene delivery to muscle of neonatal mice by different AAV serotypes via i.v. injection.
Figure 3: Systemic gene delivery to muscle and heart by intravenous (i.v.) injection in adult mice and hamsters.
Figure 4: Comparison of gene transfer efficiency of AAV serotype vectors by direct i.m. or i.v. injection on hind limbs.
Figure 5: Time course of GFP gene expression and the presence of vector DNA in liver and heart after i.p. injection of AAV8 in neonatal mice.

Similar content being viewed by others

References

  1. Watchko, J. et al. Adeno-associated virus vector-mediated minidystrophin gene therapy improves dystrophic muscle contractile function in mdx mice. Hum. Gene Ther. 13, 1451–1460 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, B., Li, J. & Xiao, X. From the cover: adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc. Natl. Acad. Sci. USA 97, 13714–13719 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van Deutekom, J.C. & van Ommen, G.J. Advances in Duchenne muscular dystrophy gene therapy. Nat. Rev. Genet. 4, 774–783 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Harper, S.Q. et al. Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat. Med. (see comments) 8, 253–261 (2002).

    Article  CAS  Google Scholar 

  5. Manno, C.S. et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 101, 2963–2972 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Song, S. et al. Sustained secretion of human alpha-1-antitrypsin from murine muscle transduced with adeno-associated virus vectors. Proc. Natl. Acad. Sci. USA 95, 14384–14388 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fraites, T.J. Jr. et al. Correction of the enzymatic and functional deficits in a model of pompe disease using adeno-associated virus vectors. Mol. Ther. 5, 571–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Xiao, X., Li, J. & Samulski, R.J. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J. Virol. 70, 8098–8108 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kessler, P.D. et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc. Natl. Acad. Sci. USA 93, 14082–14087 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fisher, K.J. et al. Recombinant adeno-associated virus for muscle directed gene therapy. Nat. Med. 3, 306–312 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Kawada, T. et al. Rescue of hereditary form of dilated cardiomyopathy by rAAV-mediated somatic gene therapy: amelioration of morphological findings, sarcolemmal permeability, cardiac performances, and the prognosis of TO-2 hamsters. Proc. Natl. Acad. Sci. USA 99, 901–906 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Budker, V., Zhang, G., Danko, I., Williams, P. & Wolff, J. The efficient expression of intravascularly delivered DNA in rat muscle. Gene Ther. 5, 272–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Greelish, J.P. et al. Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector. Nat. Med. 5, 439–443 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Hoshijima, M. et al. Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat. Med. 8, 864–871 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Li, J. et al. Efficient and long-term intracardiac gene transfer in delta-sarcoglycan-deficiency hamster by adeno-associated virus-2 vectors. Gene Ther. 10, 1807–1813 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Rucker, M. et al. Rescue of enzyme deficiency in embryonic diaphragm in a mouse model of metabolic myopathy: pompe disease. Development 131, 3007–3019 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Cordier, L. et al. Rescue of skeletal muscles of gamma-sarcoglycan-deficient mice with adeno-associated virus-mediated gene transfer. Mol. Ther. 1, 119–129 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Dressman, D. et al. Delivery of alpha- and beta-Sarcoglycan by recombinant adeno-associated virus: efficient rescue of muscle, but differential toxicity. Hum. Gene Ther. 13, 1631–1646 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Chao, H. et al. Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol. Ther. 2, 619–623 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Hammermann, M. et al. Salt-dependent DNA superhelix diameter studied by small angle neutron scattering measurements and Monte Carlo simulations. Biophys. J. 75, 3057–3063 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoshida, K. et al. Fabrication of a new substrate for atomic force microscopic observation of DNA molecules from an ultrasmooth sapphire plate. Biophys. J. 74, 1654–1657 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pruchnic, R. et al. The use of adeno-associated virus to circumvent the maturation-dependent viral transduction of muscle fibers. Hum. Gene Ther. 11, 521–536 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Xiao, W. et al. Gene therapy vectors based on adeno-associated virus type 1. J. Virol. 73, 3994–4003 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao, G.P. et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl. Acad. Sci. USA 99, 11854–11859 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao, G. et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J. Virol. 78, 6381–6388 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Summerford, C. & Samulski, R.J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol. 72, 1438–1445 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Walters, R.W. et al. Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J. Biol. Chem. 276, 20610–20616 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Di Pasquale, G. et al. Identification of PDGFR as a receptor for AAV-5 transduction. Nat. Med. 9, 1306–1312 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Kaludov, N., Brown, K.E., Walters, R.W., Zabner, J. & Chiorini, J.A. Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J. Virol. 75, 6884–6893 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, Z. et al. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther. 10, 2105–2111 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Xu, L. et al. CMV-beta-actin promoter directs higher expression from an adeno-associated viral vector in the liver than the cytomegalovirus or elongation factor 1 alpha promoter and results in therapeutic levels of human factor X in mice. Hum. Gene Ther. 12, 563–573 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Gregorevic, P. et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat. Med. 10, 828–834 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, J. et al. rAAV vector-mediated sarcogylcan gene transfer in a hamster model for limb girdle muscular dystrophy. Gene Ther. 6, 74–82 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Li, X., Eastman, E.M., Schwartz, R.J. & Draghia-Akli, R. Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences. Nat. Biotechnol. 17, 241–245 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Hagstrom, J.E. et al. A facile nonviral method for delivering genes and sirnas to skeletal muscle of mammalian limbs. Mol. Ther. 10, 386–398 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Arruda, V.R. et al. Regional intravascular delivery of AAV-2-F.IX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model. Blood; published online 12 October 2004.

  37. Lee, C.G. et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances T(H)2-mediated sensitization and inflammation in the lung. Nat. Med. 10, 1095–1103 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kern, A. et al. Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J. Virol. 77, 11072–11081 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hauck, B., Chen, L. & Xiao, W. Generation and characterization of chimeric recombinant AAV vectors. Mol. Ther. 7, 419–425 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Rabinowitz, J.E. et al. Cross-dressing the virion: the transcapsidation of adeno-associated virus serotypes functionally defines subgroups. J. Virol. 78, 4421–4432 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shi, W., Arnold, G.S. & Bartlett, J.S. Insertional mutagenesis of the adeno-associated virus type 2 (AAV2) capsid gene and generation of AAV2 vectors targeted to alternative cell-surface receptors. Hum. Gene Ther. 12, 1697–1711 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Loiler, S.A. et al. Targeting recombinant adeno-associated virus vectors to enhance gene transfer to pancreatic islets and liver. Gene Ther. 10, 1551–1558 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Bartlett, J.S., Kleinschmidt, J., Boucher, R.C. & Samulski, R.J. Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab'gamma)2 antibody. Nat. Biotechnol. (erratum in Nat. Biotechnol. 17, 393, 1999) 17, 181–186 (1999).

    Article  Google Scholar 

  44. Xiao, X., Li, J. & Samulski, R.J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 2224–2232 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rabinowitz, J.E. et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J. Virol. 76, 791–801 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rutledge, E.A., Halbert, C.L. & Russell, D.W. Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J. Virol. 72, 309–319 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, J., Samulski, R.J. & Xiao, X. Role for highly regulated rep gene expression in adeno-associated virus vector production. J. Virol. 71, 5236–5243 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Snyder, R., Xiao, X. & Samulski, R.J. Production of recombinant adeno-associated viral vectors. in Current Protocols in Human Genetics (eds. Dracopoli, N. et al.) 12.11.11–12.12.23 (John Wiley & Sons Ltd., New York, 1996).

    Google Scholar 

  49. Sands, M.S. & Barker, J.E. Percutaneous intravenous injection in neonatal mice. Lab. Anim. Sci. 49, 328–330 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Michelle Raab for critical reading of the manuscript; Guangping Gao and James Wilson for the AAV7 and 8 packaging plasmid; David W. Russell for the AAV6 packaging plasmid. This work is supported by National Institutes of Health grants NS46546, AR45967 and AR50595 to X.X.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Xiao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Gene expression and vector DNA in testis after i.v. administration of AAV1, AAV6 and AAV8 in adult mice. (PDF 191 kb)

Supplementary Fig. 2

Comparison of AAV2 and AAV8 in adult hamsters for systemic gene delivery. (PDF 351 kb)

Supplementary Fig. 3

High efficiency δ-sarcoglycan (δ-SG) gene transfer and profound improvement in histophathology of heart and muscle of TO-2 hamsters. (PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Zhu, T., Qiao, C. et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 23, 321–328 (2005). https://doi.org/10.1038/nbt1073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1073

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing