Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unravelling biological macromolecules with cryo-electron microscopy

Abstract

Knowledge of the three-dimensional structures of proteins and other biological macromolecules often aids understanding of how they perform complicated tasks in the cell. Because many such tasks involve the cleavage or formation of chemical bonds, structural characterization at the atomic level is most useful. Developments in the electron microscopy of frozen hydrated samples (cryo-electron microscopy) are providing unprecedented opportunities for the structural characterization of biological macromolecules. This is resulting in a wave of information about processes in the cell that were impossible to characterize with existing techniques in structural biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth in structural biology over the past 40 years.
Figure 2: Membrane protein structural biology.
Figure 3: Soluble macromolecular machines.
Figure 4: Image classification enables the study of macromolecular dynamics.

Similar content being viewed by others

References

  1. Alberts, B. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291–294 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Banerjee, S. et al. 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351, 871–875 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kühlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014).

    Article  ADS  PubMed  Google Scholar 

  4. Taylor, K. A. & Glaeser, R. M. Electron diffraction of frozen, hydrated protein crystals. Science 186, 1036–1037 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Dubochet, J., Chang, J.-J., Freeman, R., Lepault, J. & McDowall, A. W. Frozen aqueous suspensions. Ultramicroscopy 10, 55–62 (1982).

    Article  Google Scholar 

  6. Frank, J., Verschoor, A. & Boublik, M. Computer averaging of electron micrographs of 40S ribosomal subunits. Science 214, 1353–1355 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Jiang, W. et al. Backbone structure of the infectious ε15 virus capsid revealed by electron cryomicroscopy. Nature 451, 1130–1134 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Yu, X., Jin, L. & Zhou, Z. H. 3.88 Å structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Nature 453, 415–419 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, X. et al. Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc. Natl Acad. Sci. USA 105, 1867–1872 (2008).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Villa, E. et al. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc. Natl Acad. Sci. USA 106, 1063–1068 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Schuette, J.-C. et al. GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J. 28, 755–765 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seidelt, B. et al. Structural insight into nascent polypeptide chain-mediated translational stalling. Science 326, 1412–1415 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Agard, D., Cheng, Y., Glaeser, R. M. & Subramaniam, S. in Advances in Imaging and Electron Physics Vol. 185 (ed. Hawkes, P. W.) Ch. 2, 113–137 (Elsevier, 2014).

    Google Scholar 

  14. Frank, J. Generalized single-particle cryo-EM—a historical perspective. Microscopy 65, 3–8 (2016).

    Article  PubMed  Google Scholar 

  15. Vinothkumar, K. R. & Henderson, R. Single particle electron cryomicroscopy: trends, issues and future perspective. Q. Rev. Biophys. 49, e13 (2016).

    Article  PubMed  Google Scholar 

  16. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Krivanek, O. L. & Mooney, P. E. Applications of slow-scan CCD cameras in transmission electron microscopy. Ultramicroscopy 49, 95–108 (1993).

    Article  CAS  Google Scholar 

  18. Potter, C. S. et al. Leginon: a system for fully automated acquisition of 1000 electron micrographs a day. Ultramicroscopy 77, 153–161 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. McMullan, G., Chen, S., Henderson, R. & Faruqi, A. R. Detective quantum efficiency of electron area detectors in electron microscopy. Ultramicroscopy 109, 1126–1143 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McMullan, G., Faruqi, A. R., Clare, D. & Henderson, R. Comparison of optimal performance at 300keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147, 156–163 (2014). A comparison of the three commercially available direct electron detectors; all were shown to perform better than photographic film.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Methods 10, 584–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brilot, A. F. et al. Beam-induced motion of vitrified specimen on holey carbon film. J. Struct. Biol. 177, 630–637 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Campbell, M. G. et al. Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure 20, 1823–1828 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bai, X.-C., Fernandez, I. S., McMullan, G. & Scheres, S. H. W. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2, e00461 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Scheres, S. H. W. et al. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nature Methods 4, 27–29 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Lyumkis, D., Brilot, A. F., Theobald, D. L. & Grigorieff, N. Likelihood-based classification of cryo-EM images using FREALIGN. J. Struct. Biol. 183, 377–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Sigworth, F. J. A. Maximum-likelihood approach to single-particle image refinement. J. Struct. Biol. 122, 328–339 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Clare, D. K. et al. ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin. Cell 149, 113–123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Allegretti, M., Mills, D. J., McMullan, G., Kühlbrandt, W. & Vonck, J. Atomic model of the F420-reducing [NiFe] hydrogenase by electron cryo-microscopy using a direct electron detector. eLife 3, e01963 (2014). Refs 29–31 each present one of the first three high-resolution structures that heralded the resolution revolution in cryo-EM-based structure determination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107–112 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485–1489 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scheres, S. H. W. A Bayesian view on cryo-EM structure determination. J. Mol. Biol. 415, 406–418 (2012). A statistical framework for the classification and high-resolution refinement of cryo-EM structures that reduces the need for expert supervision.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bai, X.-C. et al. An atomic structure of human γ-secretase. Nature 525, 212–217 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Merk, A. et al. Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165, 1698–1707 (2016). The highest reported resolution (1.8 Å) of a single-particle reconstruction, at present.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Campbell, M. G., Veesler, D., Cheng, A., Potter, C. S. & Carragher, B. 2.8 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy. eLife 4, e06380 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  36. Bartesaghi, A. et al. 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science 348, 1147–1151 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife 4, e06980 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Althoff, T., Mills, D. J., Popot, J. L. & Kühlbrandt, W. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1 . EMBO J. 30, 4652–4664 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bayburt, T. H. & Sligar, S. G. Membrane protein assembly into nanodiscs. FEBS Lett. 584, 1721–1727 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Frauenfeld, J. et al. A saposin-lipoprotein nanoparticle system for membrane proteins. Nature Methods 13, 345–351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao, E., Liao, M., Cheng, Y. & Julius, D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113–118 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347–351 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu, J. et al. Structure of the voltage-gated calcium channel CaV1.1 complex. Science 350, aad2395 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Hite, R. K. et al. Cryo-electron microscopy structure of the Slo2.2 Na+-activated K+ channel. Nature 527, 198–203 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Du, J., Lü, W., Wu, S., Cheng, Y. & Gouaux, E. Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature 526, 224–229 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baker, M. Making membrane proteins for structures: a trillion tiny tweaks. Nature Methods 7, 429–434 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Lyumkis, D. et al. Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science 342, 1484–1490 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee, J. H., Ozorowski, G. & Ward, A. B. Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer. Science 351, 1043–1048 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Misasi, J. et al. Structural and molecular basis for Ebola virus neutralization by protective human antibodies. Science 351, 1343–1346 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gong, X. et al. Structural insights into the Niemann–Pick C1 (NPC1)-mediated cholesterol transfer and Ebola infection. Cell 165, 1467–1478 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yan, Z. et al. Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517, 50–55 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Efremov, R. G., Leitner, A., Aebersold, R. & Raunser, S. Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517, 39–43 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Zalk, R. et al. Structure of a mammalian ryanodine receptor. Nature 517, 44–49 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Fan, G. et al. Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature 527, 336–341 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tajima, N. et al. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature 534, 63–68 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhu, S. et al. Mechanism of NMDA receptor inhibition and activation. Cell 165, 704–714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Herguedas, B. et al. Structure and organization of heteromeric AMPA-type glutamate receptors. Science 352, aad3873 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Meyerson, J. R. et al. Structural mechanism of glutamate receptor activation and desensitization. Nature 514, 328–334 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vinothkumar, K. R., Zhu, J. & Hirst, J. Architecture of mammalian respiratory complex I. Nature 515, 80–84 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wei, X. et al. Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution. Nature 534, 69–74 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Zhao, J., Benlekbir, S. & Rubinstein, J. L. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521, 241–245 (2015). An example of how image classification can reveal numerous functional states of dynamic molecular machines from a single experiment.

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Allegretti, M. et al. Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature 521, 237–240 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Amunts, A., Brown, A., Toots, J., Scheres, S. H. W. & Ramakrishnan, V. The structure of the human mitochondrial ribosome. Science 348, 95–98 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Greber, B. J. et al. The complete structure of the 55S mammalian mitochondrial ribosome. Science 348, 303–308 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Zhang, L. et al. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350, 404–409 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hu, Z. et al. Structural and biochemical basis for induced self-propagation of NLRC4. Science 350, 399–404 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Nguyen, T. H. D. et al. Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution. Nature 530, 298–302 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Agafonov, D. E. et al. Molecular architecture of the human U4/U6.U5 tri-snRNP. Science 351, 1416–1420 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Wan, R. et al. The 3.8 Å structure of the U4/U6.U5 tri-snRNP: insights into spliceosome assembly and catalysis. Science 351, 466–475 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Mosadeghi, R. et al. Structural and kinetic analysis of the COP9–signalosome activation and the cullin–RING ubiquitin ligase deneddylation cycle. eLife 5, e12102 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cavadini, S. et al. Cullin–RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature 531, 598–603 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Liu, J.-J. et al. CryoEM structure of yeast cytoplasmic exosome complex. Cell Res. 26, 822–837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chang, L., Zhang, Z., Yang, J., McLaughlin, S. H. & Barford, D. Atomic structure of the APC/C and its mechanism of protein ubiquitination. Nature 522, 450–454 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang, S. et al. Molecular mechanism of APC/C activation by mitotic phosphorylation. Nature 533, 260–264 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schweitzer, A. et al. Structure of the human 26S proteasome at a resolution of 3.9 Å. Proc. Natl Acad. Sci. USA 113, 7816–7821 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dambacher, C. M., Worden, E. J., Herzik, M. A., Martin, A. & Lander, G. C. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. eLife 5, e13027 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhou, Q. et al. Cryo-EM structure of SNAP-SNARE assembly in 20S particle. Cell Res. 25, 551–560 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhao, M. et al. Mechanistic insights into the recycling machine of the SNARE complex. Nature 518, 61–67 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chowdhury, S., Ketcham, S. A., Schroer, T. A. & Lander, G. C. Structural organization of the dynein–dynactin complex bound to microtubules. Nature Struct. Mol. Biol. 22, 345–347 (2015).

    Article  CAS  Google Scholar 

  80. Urnavicius, L. et al. The structure of the dynactin complex and its interaction with dynein. Science 347, 1441–1446 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Verba, K. A. et al. Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Science 352, 1542–1547 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Aylett, C. H. S. et al. Architecture of human mTOR complex 1. Science 351, 48–52 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Baretić, D., Berndt, A., Ohashi, Y., Johnson, C. M. & Williams, R. L. Tor forms a dimer through an N-terminal helical solenoid with a complex topology. Nature Commun. 7, 11016 (2016).

    Article  ADS  CAS  Google Scholar 

  84. Fernández-Leiro, R., Conrad, J., Scheres, S. H. & Lamers, M. H. Cryo-EM structures of the E. coli replicative DNA polymerase reveal its dynamic interactions with the DNA sliding clamp, exonuclease and τ. eLife 4, e11134 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Li, N. et al. Structure of the eukaryotic MCM complex at 3.8 Å. Nature 524, 186–191 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Yuan, Z. et al. Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nature Struct. Mol. Biol. 23, 217–224 (2016).

    Article  CAS  Google Scholar 

  87. Abid Ali, F. et al. Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate. Nature Commun. 7, 10708 (2016).

    Article  ADS  CAS  Google Scholar 

  88. Hoffmann, N. A. et al. Molecular structures of unbound and transcribing RNA polymerase III. Nature 528, 231–236 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Murakami, K. et al. Structure of an RNA polymerase II preinitiation complex. Proc. Natl Acad. Sci. USA 112, 13543–13548 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bernecky, C., Herzog, F., Baumeister, W., Plitzko, J. M. & Cramer, P. Structure of transcribing mammalian RNA polymerase II. Nature 529, 551–554 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  91. He, Y. et al. Near-atomic resolution visualization of human transcription promoter opening. Nature 533, 359–365 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Plaschka, C. et al. Transcription initiation complex structures elucidate DNA opening. Nature 533, 353–358 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Zhang, X. et al. In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus. Nature 527, 531–534 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, H. & Cheng, L. Cryo-EM shows the polymerase structures and a nonspooled genome within a dsRNA virus. Science 349, 1347–1350 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Ru, H. et al. Molecular mechanism of V(D)J recombination from synaptic RAG1–RAG2 complex structures. Cell 163, 1138–1152 (2015); erratum 163, 1807 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maskell, D. P. et al. Structural basis for retroviral integration into nucleosomes. Nature 523, 366–369 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ballandras-Colas, A. et al. Cryo-EM reveals a novel octameric integrase structure for betaretroviral intasome function. Nature 530, 358–361 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Qu, G. et al. Structure of a group II intron in complex with its reverse transcriptase. Nature Struct. Mol. Biol. 23, 549–557 (2016).

    Article  CAS  Google Scholar 

  99. Jiang, F. et al. Structures of a CRISPR–Cas9 R-loop complex primed for DNA cleavage. Science 351, 867–871 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Taylor, D. W. et al. Structures of the CRISPR–Cmr complex reveal mode of RNA target positioning. Science 348, 581–585 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Behrmann, E. et al. Structural snapshots of actively translating human ribosomes. Cell 161, 845–857 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Campbell, M. G. et al. Near-atomic resolution reconstructions using a mid-range electron microscope operated at 200kV. J. Struct. Biol. 188, 183–187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liang, B. et al. Structure of the L protein of vesicular stomatitis virus from electron cryomicroscopy. Cell 162, 314–327 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Saibil, H. R., Grünewald, K. & Stuart, D. I. A national facility for biological cryo-electron microscopy. Acta Crystallogr. D 71, 127–135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cianfrocco, M. A. & Leschziner, A. E. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud. eLife 4, e06664 (2015).

    Article  PubMed Central  Google Scholar 

  106. Schmeisser, M. et al. Parallel, distributed and GPU computing technologies in single-particle electron microscopy. Acta Crystallogr. D 65, 659–671 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kimanius, D., Forsberg, B. O., Scheres, S. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. Preprint at http://dx.doi.org/10.1101/059717 (2016).

  108. McMullan, G., Clark, A. T., Turchetta, R. & Faruqi, A. R. Enhanced imaging in low dose electron microscopy using electron counting. Ultramicroscopy 109, 1411–1416 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Danev, R. & Baumeister, W. Cryo-EM single particle analysis with the Volta phase plate. eLife 5, e13046 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Fischer, N. et al. Structure of the E. coli ribosome–EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM. Nature 520, 567–570 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  111. Scheres, S. H. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3, e03665 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Stark, H., Zemlin, F. & Boettcher, C. Electron radiation damage to protein crystals of bacteriorhodopsin at different temperatures. Ultramicroscopy 63, 75–79 (1996).

    Article  CAS  Google Scholar 

  113. Russo, C. J. & Passmore, L. A. Ultrastable gold substrates for electron cryomicroscopy. Science 346, 1377–1380 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  114. Russo, C. J. & Passmore, L. A. Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas. Nature Methods 11, 649–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pantelic, R. S., Meyer, J. C., Kaiser, U., Baumeister, W. & Plitzko, J. M. Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. J. Struct. Biol. 170, 152–156 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Kelly, D. F., Dukovski, D. & Walz, T. New applications for affinity grids in preparing EM specimens. Microsc. Microanal. 16 (suppl. S2), 840–841 (2010).

    Article  ADS  CAS  Google Scholar 

  117. Jain, T., Sheehan, P., Crum, J., Carragher, B. & Potter, C. S. Spotiton: a prototype for an integrated inkjet dispense and vitrification system for cryo-TEM. J. Struct. Biol. 179, 68–75 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Unwin, N. Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  119. Chen, B. et al. Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy. Structure 23, 1097–1105 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dashti, A. et al. Trajectories of the ribosome as a Brownian nanomachine. Proc. Natl Acad. Sci. USA 111, 17492–17497 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, H. et al. Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature 530, 233–236 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kosinski, J. et al. Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science 352, 363–365 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Song, F. et al. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344, 376–380 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  124. Baumeister, W. Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr. Opin. Struct. Biol. 12, 679–684 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Mahamid, J. et al. Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351, 969–972 (2016). This work presents an exciting vision of how cryo-electron tomography and sub-tomogram averaging can bridge the gap between the structural biology of isolated complexes and cell biology.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Cheng, D. Barford and R. Henderson for comments on an early version of this manuscript. S.H.W.S is funded by the UK Medical Research Council (MC_UP_A025_1013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sjors H. W. Scheres.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez-Leiro, R., Scheres, S. Unravelling biological macromolecules with cryo-electron microscopy. Nature 537, 339–346 (2016). https://doi.org/10.1038/nature19948

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature19948

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing