Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sphingolipid lysosomal storage disorders

Subjects

Abstract

Lysosomal storage diseases are inborn errors of metabolism, the hallmark of which is the accumulation, or storage, of macromolecules in the late endocytic system. They are monogenic disorders that occur at a collective frequency of 1 in 5,000 live births and are caused by inherited defects in genes that mainly encode lysosomal proteins, most commonly lysosomal enzymes. A subgroup of these diseases involves the lysosomal storage of glycosphingolipids. Through our understanding of the genetics, biochemistry and, more recently, cellular aspects of sphingolipid storage disorders, we have gained insights into fundamental aspects of cell biology that would otherwise have remained opaque. In addition, study of these disorders has led to significant progress in the development of therapies, several of which are now in routine clinical use. Emerging mechanistic links with more common diseases suggest we need to rethink our current concept of disease boundaries.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glycosphingolipid biosynthetic pathway.
Figure 2: Glycosphingolipid catabolism and associated lysosomal storage diseases.
Figure 3: The pathogenic cascade and therapeutic approaches.

Similar content being viewed by others

References

  1. Sandhoff, K. & Kolter, T. Biosynthesis and degradation of mammalian glycosphingolipids. Phil. Trans. R. Soc. Lond. B 358, 847–861 (2003).

    CAS  Google Scholar 

  2. Vitner, E. B., Platt, F. M. & Futerman, A. H. Common and uncommon pathogenic cascades in lysosomal storage diseases. J. Biol. Chem. 285, 20423–20427 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Schnaar, R. L., Suzuki, A. & Stanley, P. in Essentials of Glycobiology (eds Varki, A. et al.) (Cold Spring Harbour Laboratory Press, 2009).

    Google Scholar 

  4. Schnaar, R. L. in Neuroglycobiology (eds Fukuda, M., Rutishauser, U., Schnaar, R.L., & Yamaguchi, Y.) 95–113 (Oxford University Press, 2005).

    Google Scholar 

  5. Park, J. W., Park, W. J. & Futerman, A. H. Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim. Biophys. Acta 1841, 671–681 (2013).

    PubMed  Google Scholar 

  6. Yamashita, T. et al. A vital role for glycosphingolipid synthesis during development and differentiation. Proc. Natl Acad. Sci. USA 96, 9142–9147 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Proia, R. L. Glycosphingolipid functions: insights from engineered mouse models. Phil. Trans. R. Soc. Lond. B 358, 879–883 (2003).

    CAS  Google Scholar 

  8. Simpson, M. A. et al. Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nature Genet. 36, 1225–1229 (2004). This study was the first to provide a genetically and biochemically proven example of a human GSL biosynthetic disease.

    CAS  PubMed  Google Scholar 

  9. Harlalka, G. V. et al. Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis. Brain 136, 3618–3624 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. Boukhris, A. et al. Alteration of ganglioside biosynthesis responsible for complex hereditary spastic paraplegia. Am. J. Hum. Genet. 93, 118–123 (2013). References 9 and 10 both report the second genetically proven example of a human GSL biosynthetic disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Proia, R. L. Gangliosides help stabilize the brain. Nature Genet. 36, 1147–1148 (2004).

    CAS  PubMed  Google Scholar 

  12. Schultz, M. L., Tecedor, L., Chang, M. & Davidson, B. L. Clarifying lysosomal storage diseases. Trends Neurosci. 34, 401–410 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wraith, J. E. in Lysosomal Disorders of the Brain (eds Platt, F. M. & Walkley, S. U.) 50–77 (Oxford University Press, 2004).

    Google Scholar 

  14. Rapola, J. Lysosomal storage diseases in adults. Pathol. Res. Pract. 190, 759–766 (1994).

    CAS  PubMed  Google Scholar 

  15. Sedel, F. Niemann-Pick diseases in adults. Rev. Med. Interne 28 (suppl. 4), S292–S293 (2007).

    PubMed  Google Scholar 

  16. van der Beek, N. A. et al. Clinical features and predictors for disease natural progression in adults with Pompe disease: a nationwide prospective observational study. Orphanet J. Rare Dis. 7, 88 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. Hopwood, J. J., Crawley, A. C. & Taylor, R. M. in Lysosomal disorders of the brain Vol. 1 (eds Platt, F. M. & Walkley, S. U.) 257–289 (Oxford University Press, 2004).

    Google Scholar 

  18. Hemsley, K. M. & Hopwood, J. J. Lessons learnt from animal models: pathophysiology of neuropathic lysosomal storage disorders. J. Inherit. Metab. Dis. 33, 363–371 (2010).

    CAS  PubMed  Google Scholar 

  19. Zeng, B. J. et al. Spontaneous appearance of Tay-Sachs disease in an animal model. Mol. Genet. Metab. 95, 59–65 (2008).

    CAS  PubMed  Google Scholar 

  20. Zervas, M., Somers, K. L., Thrall, M. A. & Walkley, S. U. Critical role for glycosphingolipids in Niemann-Pick disease type C. Curr. Biol. 11, 1283–1287 (2001). The study reports the first animal model evidence that miglustat might be a disease-modifying treatment for NPC disease.

    CAS  PubMed  Google Scholar 

  21. Patterson, M. C., Vecchio, D., Prady, H., Abel, L. & Wraith, J. E. Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol. 6, 765–772 (2007). This investigation confirmed that miglustat is a disease-modifying treatment for patients with NPC disease.

    CAS  PubMed  Google Scholar 

  22. Ioannou, Y. A., Zeidner, K. M., Gordon, R. E. & Desnick, R. J. Fabry disease: preclinical studies demonstrate the effectiveness of alpha-galactosidase A replacement in enzyme-deficient mice. Am. J. Hum. Genet. 68, 14–25 (2001).

    CAS  PubMed  Google Scholar 

  23. Brady, R. O., Murray, G. J., Moore, D. F. & Schiffmann, R. Enzyme replacement therapy in Fabry disease. J. Inherit. Metab. Dis. 24, 18–24, discussion 11–12 (2001).

    CAS  PubMed  Google Scholar 

  24. Laurijssens, B., Aujard, F. & Rahman, A. Animal models of Alzheimer's disease and drug development. Drug Discov. Today. Technol. 10, e319–e327 (2013).

    PubMed  Google Scholar 

  25. Platt, F. M., Boland, B. & van der Spoel, A. C. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J. Cell Biol. 199, 723–734 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nature Rev. Mol. Cell Biol. 10, 623–635 (2009).

    CAS  Google Scholar 

  27. Rosenbaum, A. I. & Maxfield, F. R. Niemann-Pick type C disease: molecular mechanisms and potential therapeutic approaches. J. Neurochem. 116, 789–795 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lloyd-Evans, E. et al. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nature Med. 14, 1247–1255 (2008).

    CAS  PubMed  Google Scholar 

  29. Lloyd-Evans, E. & Platt, F. M. Lipids on trial: the search for the offending metabolite in Niemann-Pick type C disease. Traffic 11, 419–428 (2010).

    CAS  PubMed  Google Scholar 

  30. Patterson, M. C. et al. Recommendations for the diagnosis and management of Niemann-Pick disease type C: an update. Mol. Genet. Metab. 106, 330–344 (2012).

    CAS  PubMed  Google Scholar 

  31. Tomanin, R. et al. Gene therapy approaches for lysosomal storage disorders, a good model for the treatment of mendelian diseases. Acta Paediatr. 101, 692–701 (2012).

    CAS  PubMed  Google Scholar 

  32. Cachón-González, M. B. et al. Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proc. Natl Acad. Sci. USA 103, 10373–10378 (2006).

    ADS  PubMed  PubMed Central  Google Scholar 

  33. Ellinwood, N. M. et al. Safe, efficient, and reproducible gene therapy of the brain in the dog models of Sanfilippo and Hurler syndromes. Mol. Ther. 19, 251–259 (2011).

    CAS  PubMed  Google Scholar 

  34. Ziegler, R. J. et al. Correction of the nonlinear dose response improves the viability of adenoviral vectors for gene therapy of fabry disease. Hum. Gene Ther. 13, 935–945 (2002).

    CAS  PubMed  Google Scholar 

  35. Yew, N. S. & Cheng, S. H. Gene therapy for lysosomal storage disorders. Pediatr. Endocrinol. Rev. 11 (suppl. 1), 99–109 (2013).

    PubMed  Google Scholar 

  36. Bradbury, A. M. et al. Therapeutic response in feline Sandhoff disease despite immunity to intracranial gene therapy. Mol. Ther. 21, 1306–1315 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Coutelle, C. & Waddington, S. N. The concept of prenatal gene therapy. Methods Mol. Biol. 891, 1–7 (2012).

    CAS  PubMed  Google Scholar 

  38. Mattar, C. N. et al. The case for intrauterine gene therapy. Best Pract. Res. Clin. Obstet. Gynaecol. 26, 697–709 (2012).

    PubMed  Google Scholar 

  39. Rahim, A. A. et al. Intravenous administration of AAV2/9 to the fetal and neonatal mouse leads to differential targeting of CNS cell types and extensive transduction of the nervous system. FASEB J. 25, 3505–3518 (2011).

    CAS  PubMed  Google Scholar 

  40. Foust, K. D. et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nature Biotechnol. 28, 271–274 (2010).

    CAS  Google Scholar 

  41. Nagabhushan Kalburgi, S., Khan, N. N. & Gray, S. J. Recent gene therapy advancements for neurological diseases. Discov. Med. 15, 111–119 (2013).

    PubMed  Google Scholar 

  42. Brady, R. O. Enzyme replacement for lysosomal diseases. Annu. Rev. Med. 57, 283–296 (2006). This review describes the pioneering development of the first ERTs for LSDs.

    CAS  PubMed  Google Scholar 

  43. Jmoudiak, M. & Futerman, A. H. Gaucher disease: pathological mechanisms and modern management. Br. J. Haematol. 129, 178–188 (2005).

    CAS  PubMed  Google Scholar 

  44. Cox, T. M. & Schofield, J. P. Gaucher's disease: clinical features and natural history. Baillieres Clin. Haematol. 10, 657–689 (1997).

    CAS  PubMed  Google Scholar 

  45. Brady, R. O. Enzyme replacement therapy: conception, chaos and culmination. Phil. Trans. R. Soc. Lond. B 358, 915–919 (2003).

    CAS  Google Scholar 

  46. Cox, T. M. Competing for the treasure in exceptions. Am. J. Hematol. 88, 163–165 (2013).

    PubMed  Google Scholar 

  47. Rombach, S. M., Hollak, C. E., Linthorst, G. E. & Dijkgraaf, M. G. Cost-effectiveness of enzyme replacement therapy for Fabry disease. Orphanet J. Rare Dis. 8, 29 (2013).

    PubMed  PubMed Central  Google Scholar 

  48. Kirkegaard, T. et al. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature 463, 549–553 (2010).

    ADS  CAS  PubMed  Google Scholar 

  49. Petersen, N. H. & Kirkegaard, T. HSP70 and lysosomal storage disorders: novel therapeutic opportunities. Biochem. Soc. Trans. 38, 1479–1483 (2010).

    CAS  PubMed  Google Scholar 

  50. Platt, F. M. & Jeyakumar, M. Substrate reduction therapy. Acta Paediatr. Suppl. 97, 88–93 (2008).

    Google Scholar 

  51. Platt, F. M., Neises, G. R., Dwek, R. A. & Butters, T. D. N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J. Biol. Chem. 269, 8362–8365 (1994).

    CAS  PubMed  Google Scholar 

  52. Cox, T. et al. Novel oral treatment of Gaucher's disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 355, 1481–1485 (2000).

    CAS  PubMed  Google Scholar 

  53. Lachmann, R. H. Miglustat: substrate reduction therapy for glycosphingolipid lysosomal storage disorders. Drugs Today (Barc.) 42, 29–38 (2006).

    CAS  Google Scholar 

  54. Lyseng-Williamson, K. A. Miglustat: a review of its use in Niemann-Pick disease type C. Drugs 74, 61–74 (2014).

    CAS  PubMed  Google Scholar 

  55. Chien, Y. H. et al. Long-term efficacy of miglustat in paediatric patients with Niemann-Pick disease type C. J. Inherit. Metab. Dis. 36, 129–137 (2012).

    PubMed  Google Scholar 

  56. Walterfang, M. et al. Dysphagia as a risk factor for mortality in Niemann-Pick disease type C: systematic literature review and evidence from studies with miglustat. Orphanet J. Rare Dis. 7, 76 (2012).

    PubMed  PubMed Central  Google Scholar 

  57. Ioannou, Y. A. The structure and function of the Niemann-Pick C1 protein. Mol. Genet. Metab. 71, 175–181 (2000).

    CAS  PubMed  Google Scholar 

  58. Neufeld, E. F. From serendipity to therapy. Annu. Rev. Biochem. 80, 1–15 (2011). This is a review of the pioneering discovery of cross-correction by lysosomal enzymes that formed the basis for ERT.

    CAS  PubMed  Google Scholar 

  59. Ruderman, E. M. The role of concomitant methotrexate in biologic therapy for rheumatoid arthritis. Bull. Hosp. Jt. Dis. 71 (suppl. 1), S29–S32 (2013).

    Google Scholar 

  60. Smith, D., Wallom, K. L., Williams, I. M., Jeyakumar, M. & Platt, F. M. Beneficial effects of anti-inflammatory therapy in a mouse model of Niemann-Pick disease type C1. Neurobiol. Dis. 36, 242–251 (2009).

    CAS  PubMed  Google Scholar 

  61. Jeyakumar, M. et al. NSAIDs increase survival in the Sandhoff disease mouse: Synergy with N-butyldeoxynojirimycin. Ann. Neurol. 56, 642–649 (2004).

    CAS  PubMed  Google Scholar 

  62. Jeyakumar, M. et al. Enhanced survival in Sandhoff disease mice receiving a combination of substrate deprivation therapy and bone marrow transplantation. Blood 97, 327–329 (2001).

    CAS  PubMed  Google Scholar 

  63. Palmieri, M. et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20, 3852–3866 (2011).

    CAS  PubMed  Google Scholar 

  64. Sardiello, M. & Ballabio, A. Lysosomal enhancement: a CLEAR answer to cellular degradative needs. Cell Cycle 8, 4021–4022 (2009).

    CAS  PubMed  Google Scholar 

  65. Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009). This article reports the discovery of the key role that the transcription factor TFEB has in regulating lysosome biogenesis.

    ADS  CAS  PubMed  Google Scholar 

  66. Chauhan, S. et al. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol. Cell 50, 16–28 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Füllgrabe, J., Klionsky, D. J. & Joseph, B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nature Rev. Mol. Cell Biol. 15, 65–74 (2014).

    Google Scholar 

  68. Reddy, A., Caler, E. V. & Andrews, N. W. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 106, 157–169 (2001). The authors of this paper made the discovery of an unanticipated role of lysosomes in plasma-membrane repair.

    CAS  PubMed  Google Scholar 

  69. Jaiswal, J. K., Andrews, N. W. & Simon, S. M. Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J. Cell Biol. 159, 625–635 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Medina, D. L. et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 21, 421–430 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, B. et al. Cyclodextrin overcomes the transport defect in nearly every organ of NPC1 mice leading to excretion of sequestered cholesterol as bile acid. J. Lipid Res. 51, 933–944 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ramirez, C. M. et al. Weekly cyclodextrin administration normalizes cholesterol metabolism in nearly every organ of the Niemann-Pick type C1 mouse and markedly prolongs life. Pediatr. Res. 68, 309–315 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Davidson, C. D. et al. Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS ONE 4, e6951 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  74. Stein, V. M. et al. Miglustat improves purkinje cell survival and alters microglial phenotype in feline Niemann-Pick disease type C. J. Neuropathol. Exp. Neurol. 71, 434–448 (2012).

    CAS  PubMed  Google Scholar 

  75. Chen, F. W., Li, C. & Ioannou, Y. A. Cyclodextrin induces calcium-dependent lysosomal exocytosis. PLoS ONE 5, e15054 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pontikis, C. C., Davidson, C. D., Walkley, S. U., Platt, F. M. & Begley, D. J. Cyclodextrin alleviates neuronal storage of cholesterol in Niemann-Pick C disease without evidence of detectable blood-brain barrier permeability. J. Inherit. Metab. Dis. 36, 491–498 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. te Vruchte, D. et al. Relative acidic compartment volume as a lysosomal storage disorder-associated biomarker. J. Clin. Invest. http://dx.doi.org/10.1172/JCI72835 (2014).

  78. Sano, R. et al. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca2+-dependent mitochondrial apoptosis. Mol. Cell 36, 500–511 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu, Y. P. & Proia, R. L. Deletion of macrophage-inflammatory protein 1 alpha retards neurodegeneration in Sandhoff disease mice. Proc. Natl Acad. Sci. USA 101, 8425–8430 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vitner, E. B. et al. RIPK3 as a potential therapeutic target for Gaucher's disease. Nature Med. 20, 204–208 (2014). This article reports the discovery of the involvement of the necroptotic cell-death pathway in Gaucher and Krabbe disease.

    CAS  PubMed  Google Scholar 

  81. Wenger, D. A., Rafi, M. A. & Luzi, P. Molecular genetics of Krabbe disease (globoid cell leukodystrophy): diagnostic and clinical implications. Hum. Mutat. 10, 268–279 (1997).

    CAS  PubMed  Google Scholar 

  82. Jesionek-Kupnicka, D. et al. Krabbe disease: an ultrastructural study of globoid cells and reactive astrocytes at the brain and optic nerves. Folia Neuropathol. 35, 155–162 (1997).

    CAS  PubMed  Google Scholar 

  83. Ghavami, S. et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol. 112, 24–49 (2014).

    CAS  PubMed  Google Scholar 

  84. Linkermann, A. & Green, D. R. Necroptosis. N. Engl. J. Med. 370, 455–465 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Christofferson, D. E. & Yuan, J. Necroptosis as an alternative form of programmed cell death. Curr. Opin. Cell Biol. 22, 263–268 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunol. 1, 489–495 (2000).

    ADS  CAS  Google Scholar 

  87. Oberst, A. et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Davies, J. P., Chen, F. W. & Ioannou, Y. A. Transmembrane molecular pump activity of Niemann-Pick C1 protein. Science 290, 2295–2298 (2000).

    ADS  CAS  PubMed  Google Scholar 

  89. Ioannou, Y. A. Multidrug permeases and subcellular cholesterol transport. Nature Rev. Mol. Cell Biol. 2, 657–668 (2001).

    CAS  Google Scholar 

  90. Liscum, L. Niemann-Pick type C mutations cause lipid traffic jam. Traffic 1, 218–225 (2000).

    CAS  PubMed  Google Scholar 

  91. Futerman, A. H. Calcium homeostasis in lysosomal storage diseases. Int. J. Clin. Pharmacol. Ther. 48, S6–S7 (2010).

    Google Scholar 

  92. Neefjes, J. & van der Kant, R. Stuck in traffic: an emerging theme in diseases of the nervous system. Trends Neurosci. 37, 66–76 (2014).

    CAS  PubMed  Google Scholar 

  93. Nixon, R. A. The role of autophagy in neurodegenerative disease. Nature Med. 19, 983–987 (2013).

    CAS  PubMed  Google Scholar 

  94. Wraith, J. E. Lysosomal disorders. Semin. Neonatol. 7, 75–83 (2002).

    CAS  PubMed  Google Scholar 

  95. Sidransky, E. Gaucher disease: insights from a rare Mendelian disorder. Discov. Med. 14, 273–281 (2012).

    PubMed  PubMed Central  Google Scholar 

  96. Grewal, R. P. et al. Neurologic complications of nonneuronopathic Gaucher's disease. Arch. Neurol. 48, 1271–1272 (1991).

    CAS  PubMed  Google Scholar 

  97. Neudorfer, O. et al. Occurrence of Parkinson's syndrome in type I Gaucher disease. QJM 89, 691–694 (1996). The authors of this article were the first to link Gaucher disease and Parkinson's disease.

    CAS  PubMed  Google Scholar 

  98. Machaczka, M., Rucinska, M., Skotnicki, A. B. & Jurczak, W. Parkinson's syndrome preceding clinical manifestation of Gaucher's disease. Am. J. Hematol. 61, 216–217 (1999).

    CAS  PubMed  Google Scholar 

  99. Tayebi, N. et al. Gaucher disease and parkinsonism: a phenotypic and genotypic characterization. Mol. Genet. Metab. 73, 313–321 (2001).

    CAS  PubMed  Google Scholar 

  100. Bembi, B. et al. Gaucher's disease with Parkinson's disease: clinical and pathological aspects. Neurology 61, 99–101 (2003).

    CAS  PubMed  Google Scholar 

  101. Hruska, K. S., Goker-Alpan, O. & Sidransky, E. Gaucher disease and the synucleinopathies. J. Biomed. Biotechnol. 2006, 78549 (2006).

    PubMed  PubMed Central  Google Scholar 

  102. Várkonyi, J. et al. Gaucher disease associated with parkinsonism: four further case reports. Am. J. Med. Genet. A. 116A, 348–351 (2003).

    PubMed  Google Scholar 

  103. Tayebi, N. et al. Gaucher disease with parkinsonian manifestations: does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol. Genet. Metab. 79, 104–109 (2003).

    CAS  PubMed  Google Scholar 

  104. Sidransky, E. et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N. Engl. J. Med. 361, 1651–1661 (2009). This article confirmed a genetic link between GBA mutations and Parkinson's disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Goker-Alpan, O. et al. Glucocerebrosidase mutations are an important risk factor for Lewy body disorders. Neurology 67, 908–910 (2006).

    CAS  PubMed  Google Scholar 

  106. Shachar, T. et al. Lysosomal storage disorders and Parkinson's disease: Gaucher disease and beyond. Mov. Disord. 26, 1593–1604 (2011).

    PubMed  Google Scholar 

  107. Dehay, B. et al. Lysosomal impairment in Parkinson's disease. Mov. Disord. 28, 725–732 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Beutler, E. Gaucher disease: multiple lessons from a single gene disorder. Acta. Paediatr. Suppl. 95, 103–109 (2006).

    PubMed  Google Scholar 

  109. de Fost, M., Aerts, J. M. & Hollak, C. E. Gaucher disease: from fundamental research to effective therapeutic interventions. Neth. J. Med. 61, 3–8 (2003).

    CAS  PubMed  Google Scholar 

  110. Pastores, G. M. & Lien, Y. H. Biochemical and molecular genetic basis of Fabry disease. J. Am. Soc. Nephrol. 13 (suppl. 2), S130–S133 (2002).

    CAS  PubMed  Google Scholar 

  111. Bersano, A. et al. Neurological features of Fabry disease: clinical, pathophysiological aspects and therapy. Acta Neurol. Scand. 126, 77–97 (2012).

    CAS  PubMed  Google Scholar 

  112. Brady, R. O. Tay-Sachs disease: the search for the enzymatic defect. Adv. Genet. 44, 51–60 (2001).

    CAS  PubMed  Google Scholar 

  113. Mahuran, D. J., Triggs-Raine, B. L., Feigenbaum, A. J. & Gravel, R. A. The molecular basis of Tay-Sachs disease: mutation identification and diagnosis. Clin. Biochem. 23, 409–415 (1990).

    CAS  PubMed  Google Scholar 

  114. Shapiro, B. E., Logigian, E. L., Kolodny, E. H. & Pastores, G. M. Late-onset Tay-Sachs disease: the spectrum of peripheral neuropathy in 30 affected patients. MuscleNerve 38, 1012–1015 (2008).

    Google Scholar 

  115. Gravel, R. A. et al. in The Metabolic and Molecular Bases of Inherited Disease Vol. 3 (eds Scriver, C. R., Beadet, A. L., Valle, D. & Sly, W. S.) 3827–3876 (McGraw Hill, 2001).

    Google Scholar 

  116. Hadfield, M. G., Mamunes, P. & David, R. B. The pathology of Sandhoff's disease. J. Pathol. 123, 137–144 (1977).

    CAS  PubMed  Google Scholar 

  117. Suzuki, Y., Sakuraba, H. & Oshima, M. in The Metabolic and Molecular Bases of Inherited Diseases Vol. 2 (eds Scriver, C. R., Beadet, A. L., Sly, W. S. & Valle, D.) 2785–2824 (McGraw Hill, 1995).

    Google Scholar 

  118. Suzuki, Y., Oshima, A. & Nanba, E. in The Metabolic and Molecular Bases of Inherited Disease Vol. 3 (eds Scriver, C. R., Beadet, A. L., Valle, D. & Sly, W. S.) 3775–3809 (McGraw Hill, 2001).

    Google Scholar 

  119. Yoshida, K., Ikeda, S., Kawaguchi, K. & Yanagisawa, N. Adult GM1 gangliosidosis: immunohistochemical and ultrastructural findings in an autopsy case. Neurology 44, 2376–2382 (1994).

    CAS  PubMed  Google Scholar 

  120. Vanier, M. T. Niemann-Pick disease type C. Orphanet. J. Rare Dis. 5, 16 (2010).

    PubMed  PubMed Central  Google Scholar 

  121. Mengel, E. et al. Niemann-Pick disease type C symptomatology: an expert-based clinical description. Orphanet J. Rare Dis. 8, 166 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to D. Priestman for creating Fig. 1 and to N. Platt for his comments on the manuscript. F.M.P is a Royal Society Wolfson Research Merit Award holder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances M. Platt.

Ethics declarations

Competing interests

F.M.P. is a consultant for Actelion and Orphazyme.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Platt, F. Sphingolipid lysosomal storage disorders. Nature 510, 68–75 (2014). https://doi.org/10.1038/nature13476

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13476

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing