Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The bone marrow niche for haematopoietic stem cells

Subjects

Abstract

Niches are local tissue microenvironments that maintain and regulate stem cells. Haematopoiesis provides a model for understanding mammalian stem cells and their niches, but the haematopoietic stem cell (HSC) niche remains incompletely defined and beset by competing models. Recent progress has been made in elucidating the location and cellular components of the HSC niche in the bone marrow. The niche is perivascular, created partly by mesenchymal stromal cells and endothelial cells and often, but not always, located near trabecular bone. Outstanding questions concern the cellular complexity of the niche, the role of the endosteum and functional heterogeneity among perivascular microenvironments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bone marrow anatomy.
Figure 2: Haematopoietic stem cells and their niche cells surround sinusoids throughout the bone marrow.
Figure 3: Haematopoietic stem cells (HSCs) and restricted haematopoietic progenitors occupy distinct niches in the bone marrow.

Similar content being viewed by others

References

  1. Mikkola, H. K. & Orkin, S. H. The journey of developing hematopoietic stem cells. Development 133, 3733–3744 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Haeckel, E. H. P. A. Generelle Morphologie der Organismen: allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von C. Darwin reformirte Decendenz-Theorie. (1866).

    Book  Google Scholar 

  3. Haeckel, E. The Riddle of the Universe (Die Weltraetsel, 1895–1899). 1992 Reprint Edition edn, (Prometheus, 1901).

    Google Scholar 

  4. Pappenheim, A. Ueber Entwickelung und Ausbildung der Erythroblasten. Virchows Arch. 145, 587–643 (1896).

    Article  Google Scholar 

  5. Till, J. E. & McCulloch, E. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14, 213–222 (1961).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Siminovitch, L., McCulloch, E. A. & Till, J. E. The distribution of colony-forming cells among spleen colonies. J. Cell. Physiol. 62, 327–336 (1963).

    Article  CAS  Google Scholar 

  7. Siminovitch, L., Till, J. E. & McCulloch, E. A. Decline in colony-forming ability of marrow cells subjected to serial transplantation into irradiated mice. J. Cell. Physiol. 64, 23–31 (1964).

    Article  CAS  Google Scholar 

  8. Jones, R. J. et al. Characterization of mouse lymphohematopoietic stem cells lacking spleen colony-forming activity. Blood 88, 487–491 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Spangrude, G. J., Brooks, D. M. & Tumas, D. B. Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood 85, 1006–1016 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978). This article describes the niche hypothesis.

    CAS  PubMed  Google Scholar 

  11. Dexter, T. M., Allen, T. D. & Lajha, L. G. Conditions controlling the proliferation of hemopoietic stem cells in vitro. J. Cell. Physiol. 91, 335–344 (1977).

    Article  CAS  PubMed  Google Scholar 

  12. Lord, B. I., Testa, N. G. & Hendry, J. H. The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 46, 65–72 (1975).

    Article  CAS  PubMed  Google Scholar 

  13. Taichman, R. S. & Emerson, S. G. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J. Exp. Med. 179, 1677–1682 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003). In this paper, researchers identified heterologous cells influencing stem/progenitor cells in mammals, providing experimental evidence for the niche hypothesis.

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Park, D. et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10, 259–272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003). This study identified heterologous cells that influence stem or progenitor cells in mammals, providing experimental evidence for the niche hypothesis.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Ding, L. & Morrison, S. J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231–235 (2013). Systematic analysis of CXCL12-expressing cells in the bone marrow demonstrating that stem cells and restricted progenitors depend on cellularly distinct niches.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Foudi, A. et al. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nature Biotechnol. 27, 84–90 (2009).

    Article  CAS  Google Scholar 

  19. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Oguro, H., Ding, L. & Morrison, S. J. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13, 102–116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Scadden, D. T. The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Spangrude, G. J., Heimfeld, S. & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Sugimura, R. et al. Noncanonical wnt signaling maintains hematopoietic stem cells in the niche. Cell 150, 351–365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kiel, M. J. et al. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449, 238–242 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005). This article provides a definition of an immunophenotypic signature for highly enriched stem cells that permitted histological mapping of HSCs within the bone marrow and suggested the existence of a perivascular niche.

    Article  CAS  PubMed  Google Scholar 

  28. Morita, Y., Ema, H. & Nakauchi, H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J. Exp. Med. 207, 1173–1182 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yilmaz, O. H., Kiel, M. J. & Morrison, S. J. SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 107, 924–930 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kiel, M. J., Radice, G. L. & Morrison, S. J. Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell 1, 204–217 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Nombela-Arrieta, C. et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nature Cell Biol. 15, 533–543 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Lo Celso, C. et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457, 92–96 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006). This study identified a perivascular stromal cell that promoted HSC maintenance.

    Article  CAS  PubMed  Google Scholar 

  34. Wright, D. E., Wagers, A. J., Gulati, A. P., Johnson, F. L. & Weissman, I. L. Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933–1936 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Sipkins, D. A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973 (2005). This paper reports evidence that subregions of the microvasculature express high levels of Cxcl12 where transplanted haematopoietic progenitors localize and increase in number.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xie, Y. et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457, 97–101 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Hooper, A. T. et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4, 263–274 (2009). The authors of this study found that sinusoidal endothelial cells have specialized features and are necessary for HSC engraftment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kiel, M. J., Acar, M., Radice, G. L. & Morrison, S. J. Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell 4, 170–179 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Visnjic, D. et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103, 3258–3264 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Zhu, J. et al. Osteoblasts support B lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 109, 3706–3712 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Lymperi, S. et al. Strontium can increase some osteoblasts without increasing hematopoietic stem cells. Blood 111, 1173–1181 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Raaijmakers, M. H. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852–857 (2010). This article demonstrates that perturbing specific mesenchymal populations in the bone marrow can result in pathological haematopoietic outcomes, including neoplasia.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hosokawa, K. et al. Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells. Blood 116, 554–563 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Hosokawa, K. et al. Cadherin-based adhesion is a potential target for niche manipulation to protect hematopoietic stem cells in adult bone marrow. Cell Stem Cell 6, 194–198 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Wilson, A. et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 18, 2747–2763 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, P. & Zon, L. I. Resolving the controversy about N-cadherin and hematopoietic stem cells. Cell Stem Cell 6, 199–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Ivanova, N. B. et al. A stem cell molecular signature. Science 298, 601–604 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Seita, J. et al. Gene expression commons: an open platform for absolute gene expression profiling. PLoS ONE 7, e40321 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Greenbaum, A. M., Revollo, L. D., Woloszynek, J. R., Civitelli, R. & Link, D. C. N-cadherin in osteolineage cells is not required for maintenance of hematopoietic stem cells. Blood 120, 295–302 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bromberg, O. et al. Osteoblastic N-cadherin is not required for microenvironmental support and regulation of hematopoietic stem and progenitor cells. Blood 120, 303–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guezguez, B. et al. Regional localization within the bone marrow influences the functional capacity of human HSCs. Cell Stem Cell 13, 175–189 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Zhou, X. et al. Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc. Natl Acad. Sci. USA 107, 12919–12924 (2010).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  53. Chan, C. K. et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457, 490–494 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324–336 (2007). This article provides evidence for a mesenchymal skeletal stem cell that is capable of generating bone, secreting HSC niche factors and giving rise to bone marrow compartments that include HSC niches.

    Article  CAS  PubMed  Google Scholar 

  55. Ellis, S. L. et al. The relationship between bone, hemopoietic stem cells, and vasculature. Blood 118, 1516–1524 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Adams, G. B. et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439, 599–603 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Dai, J. C., He, P., Chen, X. & Greenfield, E. M. TNFα and PTH utilize distinct mechanisms to induce IL-6 and RANKL expression with markedly different kinetics. Bone 38, 509–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Fleming, H. E. et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2, 274–283 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schaniel, C. et al. Wnt-inhibitory factor 1 dysregulation of the bone marrow niche exhausts hematopoietic stem cells. Blood 118, 2420–2429 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ferraro, F. et al. Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci. Transl. Med. 3, 104ra101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Asada, N. et al. Matrix-embedded osteocytes regulate mobilization of hematopoietic stem/progenitor cells. Cell Stem Cell 12, 737–747 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Greenbaum, A. et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495, 227–230 (2013). This paper is a systematic analysis of CXCL12-expressing cells in the bone marrow, demonstrating the specific role of primitive mesenchymal cells and endothelial cells in regulating HSC maintenance.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Méndez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010). This article reports that primitive mesenchymal cells residing perivascularly regulate HSC maintenance.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012). This paper is a systematic analysis of KitL expression in the bone marrow, demonstrating the requirement for endothelial and leptin-receptor-expressing perivascular cells in regulating HSC maintenance.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Omatsu, Y. et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33, 387–399 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Morikawa, S. et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med. 206, 2483–2496 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pinho, S. et al. PDGFRα and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J. Exp. Med. 210, 1351–1367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tran, E. et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 210, 1125–1135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Roberts, E. W. et al. Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia. J. Exp. Med. 210, 1137–1151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yao, L., Yokota, T., Xia, L., Kincade, P. W. & McEver, R. P. Bone marrow dysfunction in mice lacking the cytokine receptor gp130 in endothelial cells. Blood 106, 4093–4101 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, W., Johnson, S. A., Shelley, W. C. & Yoder, M. C. Hematopoietic stem cell repopulating ability can be maintained in vitro by some primary endothelial cells. Exp. Hematol. 32, 1226–1237 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Butler, J. M. et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6, 251–264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kobayashi, H. et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nature Cell Biol. 12, 1046–1056 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Winkler, I. G. et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nature Med. 18, 1651–1657 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Broudy, V. C. Stem cell factor and hematopoiesis. Blood 90, 1345–1364 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Czechowicz, A., Kraft, D., Weissman, I. L. & Bhattacharya, D. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science 318, 1296–1299 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ogawa, M. et al. Expression and function of c-kit in hemopoietic progenitor cells. J. Exp. Med. 174, 63–71 (1991).

    Article  CAS  PubMed  Google Scholar 

  78. Russell, E. S. Hereditary anemias of the mouse: a review for geneticists. Adv. Genet. 20, 357–459 (1979).

    Article  CAS  PubMed  Google Scholar 

  79. Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of Kit-ligand. Cell 109, 625–637 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barker, J. E. Sl/Sld hematopoietic progenitors are deficient in situ. Exp. Hematol. 22, 174–177 (1994).

    CAS  PubMed  Google Scholar 

  81. Barker, J. E. Early transplantation to a normal microenvironment prevents the development of Steel hematopoietic stem cell defects. Exp. Hematol. 25, 542–547 (1997).

    CAS  PubMed  Google Scholar 

  82. Wolf, N. S. Dissecting the hematopoietic microenvironment. III. Evidence for a positive short range stimulus for cellular proliferation. Cell Tissue Kinet. 11, 335–345 (1978).

    CAS  PubMed  Google Scholar 

  83. Tzeng, Y. S. et al. Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood 117, 429–439 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Nagasawa, T. et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Petit, I. et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunol. 3, 687–694 (2002).

    Article  CAS  Google Scholar 

  86. Ara, T. et al. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 19, 257–267 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I. & Littman, D. R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Ponomaryov, T. et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J. Clin. Invest. 106, 1331–1339 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dar, A. et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nature Immunol. 6, 1038–1046 (2005).

    Article  CAS  Google Scholar 

  90. Hanoun, M. & Frenette, P. S. This niche is a maze; an amazing niche. Cell Stem Cell 12, 391–392 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006). This paper reports evidence for nervous system involvement in regulating the bone marrow HSC niche.

    Article  CAS  PubMed  Google Scholar 

  92. Méndez-Ferrer, S., Lucas, D., Battista, M. & Frenette, P. S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452, 442–447 (2008). This article demonstrates that neural circadian rhythms modulate HSC function.

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Casanova-Acebes, M. et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153, 1025–1035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chow, A. et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208, 261–271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Winkler, I. G. et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116, 4815–4828 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Yamazaki, S. et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147, 1146–1158 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Kollet, O. et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nature Med. 12, 657–664 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  98. Mansour, A. et al. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J. Exp. Med. 209, 537–549 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nakada, D., Levi, B. P. & Morrison, S. J. Integrating physiological regulation with stem cell and tissue homeostasis. Neuron 70, 703–718 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Qian, H. et al. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1, 671–684 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Yoshihara, H. et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1, 685–697 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Kimura, S., Roberts, A. W., Metcalf, D. & Alexander, W. S. Hematopoietic stem cell deficiencies in mice lacking c-Mpl, the receptor for thrombopoietin. Proc. Natl Acad. Sci. USA 95, 1195–1200 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kaushansky, K. Thrombopoietin and the hematopoietic stem cell. Blood 92, 1–3 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Guerriero, A. et al. Thrombopoietin is synthesized by bone marrow stromal cells. Blood 90, 3444–3455 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Sungaran, R., Markovic, B. & Chong, B. H. Localization and regulation of thrombopoietin mRNA expression in human kidney, liver, bone marrow, and spleen using in situ hybridization. Blood 89, 101–107 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Kunisaki, Y. et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502, 637–643 (2013). Histological characterization of subtypes of vascular structures and evidence that peri-arteriolar mesenchymal cells maintain HSC quiescence.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Parmar, K., Mauch, P., Vergilio, J. A., Sackstein, R. & Down, J. D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl Acad. Sci. USA 104, 5431–5436 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  108. Takubo, K. et al. Regulation of the HIF-1α level is essential for hematopoietic stem cells. Cell Stem Cell 7, 391–402 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Lin, C. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature (in the press).

  110. Visnjic, D. et al. Conditional ablation of the osteoblast lineage in Col2.3Δtk transgenic mice. J. Bone Miner. Res. 16, 2222–2231 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Wu, J. Y. et al. Osteoblastic regulation of B lymphopoiesis is mediated by Gsα-dependent signaling pathways. Proc. Natl Acad. Sci. USA 105, 16976–16981 (2008).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  112. Nagasawa, T., Kikutani, H. & Kishimoto, T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc. Natl Acad. Sci. USA 91, 2305–2309 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nie, Y., Han, Y. C. & Zou, Y. R. CXCR4 is required for the quiescence of primitive hematopoietic cells. J. Exp. Med. 205, 777–783 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chow, A. et al. CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nature Med. 19, 429–436 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Himburg, H. A. et al. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nature Med. 16, 475–482 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Himburg, H. A. et al. Pleiotrophin regulates the retention and self-renewal of hematopoietic stem cells in the bone marrow vascular niche. Cell Rep. 2, 964–975 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Smith-Berdan, S. et al. Robo4 cooperates with CXCR4 to specify hematopoietic stem cell localization to bone marrow niches. Cell Stem Cell 8, 72–83 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Smith-Berdan, S., Schepers, K., Ly, A., Passegue, E. & Forsberg, E. C. Dynamic expression of the Robo ligand Slit2 in bone marrow cell populations. Cell Cycle 11, 675–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Nakamura-Ishizu, A. et al. Extracellular matrix protein tenascin-C is required in the bone marrow microenvironment primed for hematopoietic regeneration. Blood 119, 5429–5437 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Stier, S. et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med. 201, 1781–1791 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nilsson, S. K. et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106, 1232–1239 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Schepers, K. et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13, 285–299 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Walkley, C. R. et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor γ deficiency. Cell 129, 1097–1110 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Walkley, C. R., Shea, J. M., Sims, N. A., Purton, L. E. & Orkin, S. H. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129, 1081–1095 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kiel, M. J. & Morrison, S. J. Uncertainty in the niches that maintain haematopoietic stem cells. Nature Rev. Immunol. 8, 290–301 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.J.M. was supported by the National Heart, Lung and Blood Institute (HL097760), the Howard Hughes Medical Institute, and the Mary McDermott Cook Chair in Pediatric Genetics. D.T.S. was supported by the National Institutes of Health (HL044851, HL096372, EB014703) and the Gerald and Darlene Jordan Chair in Medicine. We apologize to authors whose work could not be cited because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sean J. Morrison or David T. Scadden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrison, S., Scadden, D. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014). https://doi.org/10.1038/nature12984

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12984

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing