Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH

Subjects

Abstract

Ageing is a result of gradual and overall functional deteriorations across the body; however, it is unknown whether an individual tissue primarily works to mediate the ageing progress and control lifespan. Here we show that the hypothalamus is important for the development of whole-body ageing in mice, and that the underlying basis involves hypothalamic immunity mediated by IκB kinase-β (IKK-β), nuclear factor κB (NF-κB) and related microglia–neuron immune crosstalk. Several interventional models were developed showing that ageing retardation and lifespan extension are achieved in mice by preventing ageing-related hypothalamic or brain IKK-β and NF-κB activation. Mechanistic studies further revealed that IKK-β and NF-κB inhibit gonadotropin-releasing hormone (GnRH) to mediate ageing-related hypothalamic GnRH decline, and GnRH treatment amends ageing-impaired neurogenesis and decelerates ageing. In conclusion, the hypothalamus has a programmatic role in ageing development via immune–neuroendocrine integration, and immune inhibition or GnRH restoration in the hypothalamus/brain represent two potential strategies for optimizing lifespan and combating ageing-related health problems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ageing-dependent hypothalamic NF-κB activation.
Figure 2: Ageing manipulations by hypothalamic IKK-β and NF-κB.
Figure 3: Role of hypothalamic microglia in ageing.
Figure 4: Genetic longevity by brain-specific IKK-β knockout.
Figure 5: Inhibition of GnRH by IKK-β and NF-κB.
Figure 6: Central and systemic actions of GnRH in counteracting ageing.

Similar content being viewed by others

References

  1. Miller, R. A. Genes against aging. J. Gerontol. A Biol. Sci. Med. Sci. 67A, 495–502 (2012)

    Article  CAS  Google Scholar 

  2. Mattson, M. P. Pathways towards and away from Alzheimer’s disease. Nature 430, 631–639 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Masoro, E. J. Overview of caloric restriction and ageing. Mech. Ageing Dev. 126, 913–922 (2005)

    Article  CAS  Google Scholar 

  4. Finch, C. E. Neurons, glia, and plasticity in normal brain aging. Adv. Gerontol. 10, 35–39 (2002)

    CAS  PubMed  Google Scholar 

  5. Zitnik, G. & Martin, G. M. Age-related decline in neurogenesis: old cells or old environment? J. Neurosci. Res. 70, 258–263 (2002)

    Article  CAS  Google Scholar 

  6. Martin, G. M. Epigenetic gambling and epigenetic drift as an antagonistic pleiotropic mechanism of aging. Aging Cell 8, 761–764 (2009)

    Article  CAS  Google Scholar 

  7. Bishop, N. A. & Guarente, L. Two neurons mediate diet-restriction-induced longevity in C. elegans . Nature 447, 545–549 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Fridell, Y. W., Sanchez-Blanco, A., Silvia, B. A. & Helfand, S. L. Targeted expression of the human uncoupling protein 2 (hUCP2) to adult neurons extends life span in the fly. Cell Metab. 1, 145–152 (2005)

    Article  CAS  Google Scholar 

  9. Alcedo, J. & Kenyon, C. Regulation of C. elegans longevity by specific gustatory and olfactory neurons. Neuron 41, 45–55 (2004)

    Article  CAS  Google Scholar 

  10. Wolkow, C. A., Kimura, K. D., Lee, M. S. & Ruvkun, G. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 290, 147–150 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Taguchi, A., Wartschow, L. M. & White, M. F. Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317, 369–372 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Li, J., Tang, Y. & Cai, D. IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nature Cell Biol. 14, 999–1012 (2012)

    Article  CAS  Google Scholar 

  13. Zhang, X. et al. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61–73 (2008)

    Article  CAS  Google Scholar 

  14. Purkayastha, S. et al. Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress. Proc. Natl Acad. Sci. USA 108, 2939–2944 (2011)

    Article  ADS  CAS  Google Scholar 

  15. Purkayastha, S., Zhang, G. & Cai, D. Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-β and NF-κB. Nature Med. 17, 883–887 (2011)

    Article  CAS  Google Scholar 

  16. Okun, E., Griffioen, K. J. & Mattson, M. P. Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci. 34, 269–281 (2011)

    Article  CAS  Google Scholar 

  17. Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C. & Gage, F. H. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934 (2010)

    Article  CAS  Google Scholar 

  18. Saijo, K. et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137, 47–59 (2009)

    Article  CAS  Google Scholar 

  19. Saijo, K., Collier, J. G., Li, A. C., Katzenellenbogen, J. A. & Glass, C. K. An ADIOL-ERβ-CtBP transrepression pathway negatively regulates microglia-mediated inflammation. Cell 145, 584–595 (2011)

    Article  CAS  Google Scholar 

  20. Saijo, K. & Glass, C. K. Microglial cell origin and phenotypes in health and disease. Nature Rev. Immunol. 11, 775–787 (2011)

    Article  CAS  Google Scholar 

  21. Lucin, K. M. & Wyss-Coray, T. Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64, 110–122 (2009)

    Article  CAS  Google Scholar 

  22. Villeda, S. & Wyss-Coray, T. Microglia–a wrench in the running wheel? Neuron 59, 527–529 (2008)

    Article  CAS  Google Scholar 

  23. Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94 (2011)

    Article  ADS  CAS  Google Scholar 

  24. Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351 (2007)

    Article  CAS  Google Scholar 

  25. Adler, A. S. et al. Motif module map reveals enforcement of aging by continual NF-κB activity. Genes Dev. 21, 3244–3257 (2007)

    Article  CAS  Google Scholar 

  26. Peng, B. et al. Defective feedback regulation of NF-κB underlies Sjogren’s syndrome in mice with mutated κB enhancers of the IκBα promoter. Proc. Natl Acad. Sci. USA 107, 15193–15198 (2010)

    Article  ADS  CAS  Google Scholar 

  27. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009)

    Article  ADS  CAS  Google Scholar 

  28. Barger, S. W. et al. Tumor necrosis factors α and β protect neurons against amyloid β-peptide toxicity: evidence for involvement of a κ B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc. Natl Acad. Sci. USA 92, 9328–9332 (1995)

    Article  ADS  CAS  Google Scholar 

  29. Bruce, A. J. et al. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nature Med. 2, 788–794 (1996)

    Article  ADS  CAS  Google Scholar 

  30. Taoufik, E. et al. Transmembrane tumour necrosis factor is neuroprotective and regulates experimental autoimmune encephalomyelitis via neuronal nuclear factor-κB. Brain 134, 2722–2735 (2011)

    Article  Google Scholar 

  31. Kaltschmidt, B. et al. NF-κB regulates spatial memory formation and synaptic plasticity through protein kinase A/CREB signaling. Mol. Cell. Biol. 26, 2936–2946 (2006)

    Article  CAS  Google Scholar 

  32. Meffert, M. K., Chang, J. M., Wiltgen, B. J., Fanselow, M. S. & Baltimore, D. NF-κB functions in synaptic signaling and behavior. Nature Neurosci. 6, 1072–1078 (2003)

    Article  CAS  Google Scholar 

  33. O’Mahony, A. et al. NF-κB/Rel regulates inhibitory and excitatory neuronal function and synaptic plasticity. Mol. Cell. Biol. 26, 7283–7298 (2006)

    Article  Google Scholar 

  34. Huang, W., Ghisletti, S., Perissi, V., Rosenfeld, M. G. & Glass, C. K. Transcriptional integration of TLR2 and TLR4 signaling at the NCoR derepression checkpoint. Mol. Cell 35, 48–57 (2009)

    Article  Google Scholar 

  35. Kawahara, T. L. et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span. Cell 136, 62–74 (2009)

    Article  CAS  Google Scholar 

  36. Michishita, E. et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452, 492–496 (2008)

    Article  ADS  CAS  Google Scholar 

  37. Meng, Q. & Cai, D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IκB kinase β (IKKβ)/NF-κB pathway. J. Biol. Chem. 286, 32324–32332 (2011)

    Article  CAS  Google Scholar 

  38. Banks, W. A. et al. Effects of a growth hormone-releasing hormone antagonist on telomerase activity, oxidative stress, longevity, and aging in mice. Proc. Natl Acad. Sci. USA 107, 22272–22277 (2010)

    Article  ADS  CAS  Google Scholar 

  39. Tillerson, J. L. & Miller, G. W. Grid performance test to measure behavioral impairment in the MPTP-treated-mouse model of parkinsonism. J. Neurosci. Methods 123, 189–200 (2003)

    Article  Google Scholar 

  40. Mueller, J. M. & Pahl, H. L. Assaying NF-κB and AP-1 DNA-binding and transcriptional activity. Methods Mol. Biol. 99, 205–216 (2000)

    CAS  PubMed  Google Scholar 

  41. Flurkey, K., Papaconstantinou, J., Miller, R. A. & Harrison, D. E. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl Acad. Sci. USA 98, 6736–6741 (2001)

    Article  ADS  CAS  Google Scholar 

  42. Ramanadham, S. et al. Age-related changes in bone morphology are accelerated in group VIA phospholipase A2 (iPLA2β)-null mice. Am. J. Pathol. 172, 868–881 (2008)

    Article  CAS  Google Scholar 

  43. Meylan, E. et al. Requirement for NF-κB signalling in a mouse model of lung adenocarcinoma. Nature 462, 104–107 (2009)

    Article  ADS  CAS  Google Scholar 

  44. Wang, C., Li, Q., Redden, D. T., Weindruch, R. & Allison, D. B. Statistical methods for testing effects on “maximum lifespan”. Mech. Ageing Dev. 125, 629–632 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank other Cai laboratory members for technical assistance, and L. Farhana, D. Stocco, L. Eckhardt, T. Ohshima, A. Lin and D. Tantin for reagents. This study was supported by National Institutes of Health (NIH) grants R01 AG 031774, R01 DK078750, and American Diabetes Association grant 1-12-BS-20 (all to D.C.). D.C. is a recipient of Irma T. Hirschl Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

D.C. conceived project and designed the study; G.Z., J.L., S.P., Y.T., H.Z. and Y.Y. performed experiments with assistance from B.L. and G.L. All authors carried out data analyses and interpretations; D.C. organized experimentation and wrote the paper.

Corresponding author

Correspondence to Dongsheng Cai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-13. (PDF 2686 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Li, J., Purkayastha, S. et al. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497, 211–216 (2013). https://doi.org/10.1038/nature12143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12143

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing