Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid induction of inflammatory lipid mediators by the inflammasome in vivo

Abstract

Detection of microbial products by host inflammasomes is an important mechanism of innate immune surveillance. Inflammasomes activate the caspase-1 (CASP1) protease, which processes the cytokines interleukin (IL)-1β and IL-18, and initiates a lytic host cell death called pyroptosis1. To identify novel CASP1 functions in vivo, we devised a strategy for cytosolic delivery of bacterial flagellin, a specific ligand for the NAIP5 (NLR family, apoptosis inhibitory protein 5)/NLRC4 (NLR family, CARD-domain-containing 4) inflammasome2,3,4. Here we show that systemic inflammasome activation by flagellin leads to a loss of vascular fluid into the intestine and peritoneal cavity, resulting in rapid (less than 30 min) death in mice. This unexpected response depends on the inflammasome components NAIP5, NLRC4 and CASP1, but is independent of the production of IL-1β or IL-18. Instead, inflammasome activation results, within minutes, in an ‘eicosanoid storm’—a pathological release of signalling lipids, including prostaglandins and leukotrienes, that rapidly initiate inflammation and vascular fluid loss. Mice deficient in cyclooxygenase-1, a critical enzyme in prostaglandin biosynthesis, are resistant to these rapid pathological effects of systemic inflammasome activation by either flagellin or anthrax lethal toxin. Inflammasome-dependent biosynthesis of eicosanoids is mediated by the activation of cytosolic phospholipase A2 in resident peritoneal macrophages, which are specifically primed for the production of eicosanoids by high expression of eicosanoid biosynthetic enzymes. Our results therefore identify eicosanoids as a previously unrecognized cell-type-specific signalling output of the inflammasome with marked physiological consequences in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Systemic cytosolic delivery of flagellin in vivo induces NAIP5/NLRC4-dependent but IL-1β and IL-18-independent vascular leakage.
Figure 2: Resident peritoneal macrophages are critical for the early FlaTox response in vivo.
Figure 3: Inflammasome-dependent eicosanoid biosynthesis.
Figure 4: Mechanism and in vivo role of eicosanoid production.

Similar content being viewed by others

References

  1. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010)

    Article  CAS  Google Scholar 

  2. Kofoed, E. M. & Vance, R. E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477, 592–595 (2011)

    Article  ADS  CAS  Google Scholar 

  3. Zhao, Y. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596–600 (2011)

    Article  ADS  CAS  Google Scholar 

  4. Lightfield, K. L. et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nature Immunol. 9, 1171–1178 (2008)

    Article  CAS  Google Scholar 

  5. Case, C. L., Shin, S. & Roy, C. R. Asc and Ipaf inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila. Infect. Immun. 77, 1981–1991 (2009)

    Article  CAS  Google Scholar 

  6. Sutterwala, F. S. et al. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J. Exp. Med. 204, 3235–3245 (2007)

    Article  CAS  Google Scholar 

  7. Miao, E. A. et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl Acad. Sci. USA 107, 3076–3080 (2010)

    Article  ADS  CAS  Google Scholar 

  8. Miao, E. A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nature Immunol. 11, 1136–1142 (2010)

    Article  CAS  Google Scholar 

  9. Lamkanfi, M. et al. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J. Immunol. 185, 4385–4392 (2010)

    Article  CAS  Google Scholar 

  10. Gurcel, L., Abrami, L., Girardin, S., Tschopp, J. & van der Goot, F. G. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126, 1135–1145 (2006)

    Article  CAS  Google Scholar 

  11. Amer, A. et al. Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J. Biol. Chem. 281, 35217–35223 (2006)

    Article  CAS  Google Scholar 

  12. Keller, M., Ruegg, A., Werner, S. & Beer, H. D. Active caspase-1 is a regulator of unconventional protein secretion. Cell 132, 818–831 (2008)

    Article  CAS  Google Scholar 

  13. Funk, C. D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Samuelsson, B. From studies of biochemical mechanism to novel biological mediators: prostaglandin endoperoxides, thromboxanes, and leukotrienes. (Nobel Lecture, 8 December 1982.). Biosci Rep. 3, 791–813 (1983)

    Article  CAS  Google Scholar 

  15. Tobin, D. M. et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140, 717–730 (2010)

    Article  MathSciNet  CAS  Google Scholar 

  16. Serhan, C. N. & Haeggström, J. Z. in Fundamentals of Inflammation (eds Serhan, C. N., Ward, P. A. & Gilroy, D. W. ) 153–175 (Cambridge Univ. Press, 2011)

    Google Scholar 

  17. Robert, A., Nezamis, J. E., Lancaster, C., Hanchar, A. J. & Klepper, M. S. Enteropooling assay: a test for diarrhea produced by prostaglandins. Prostaglandins 11, 809–828 (1976)

    Article  CAS  Google Scholar 

  18. Riviere, P. J., Farmer, S. C., Burks, T. F. & Porreca, F. Prostaglandin E2-induced diarrhea in mice: importance of colonic secretion. J. Pharmacol. Exp. Ther. 256, 547–552 (1991)

    CAS  PubMed  Google Scholar 

  19. Serhan, C. N. et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 21, 325–332 (2007)

    Article  CAS  Google Scholar 

  20. Bonventre, J. V. et al. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2 . Nature 390, 622–625 (1997)

    Article  ADS  CAS  Google Scholar 

  21. Gijon, M. A., Spencer, D. M. & Leslie, C. C. Recent advances in the regulation of cytosolic phospholipase A2 . Adv. Enzyme Regul. 40, 255–268 (2000)

    Article  CAS  Google Scholar 

  22. Bergsbaken, T., Fink, S. L., den Hartigh, A. B., Loomis, W. P. & Cookson, B. T. Coordinated host responses during pyroptosis: caspase-1-dependent lysosome exocytosis and inflammatory cytokine maturation. J. Immunol. 187, 2748–2754 (2011)

    Article  CAS  Google Scholar 

  23. Fink, S. L. & Cookson, B. T. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 8, 1812–1825 (2006)

    Article  CAS  Google Scholar 

  24. Lamkanfi, M. et al. Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol. Cell. Proteomics 7, 2350–2363 (2008)

    Article  CAS  Google Scholar 

  25. Shao, W., Yeretssian, G., Doiron, K., Hussain, S. N. & Saleh, M. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J. Biol. Chem. 282, 36321–36329 (2007)

    Article  CAS  Google Scholar 

  26. Agard, N. J., Maltby, D. & Wells, J. A. Inflammatory stimuli regulate caspase substrate profiles. Mol. Cell. Proteomics 9, 880–893 (2010)

    Article  CAS  Google Scholar 

  27. Boyden, E. D. & Dietrich, W. F. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nature Genet. 38, 240–244 (2006)

    Article  CAS  Google Scholar 

  28. Terra, J. K. et al. Cutting edge: resistance to Bacillus anthracis infection mediated by a lethal toxin sensitive allele of Nalp1b/Nlrp1b. J. Immunol. 184, 17–20 (2010)

    Article  CAS  Google Scholar 

  29. Krantz, B. A. et al. A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore. Science 309, 777–781 (2005)

    Article  ADS  CAS  Google Scholar 

  30. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004)

    Article  ADS  CAS  Google Scholar 

  31. Li, P. et al. Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell 80, 401–411 (1995)

    Article  CAS  Google Scholar 

  32. Glomski, I. J., Decatur, A. L. & Portnoy, D. A. Listeria monocytogenes mutants that fail to compartmentalize listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infect. Immun. 71, 6754–6765 (2003)

    Article  CAS  Google Scholar 

  33. Van Rooijen, N. & Sanders, A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J. Immunol. Methods 174, 83–93 (1994)

    Article  CAS  Google Scholar 

  34. Sapieha, P. et al. 5-Lipoxygenase metabolite 4-HDHA is a mediator of the antiangiogenic effect of ω-3 polyunsaturated fatty acids. Sci. Transl. Med. 3, 69ra12 (2011)

    Article  Google Scholar 

  35. Liclican, E. L., Nguyen, V., Sullivan, A. B. & Gronert, K. Selective activation of the prostaglandin E2 circuit in chronic injury-induced pathologic angiogenesis. Invest. Ophthalmol. Vis. Sci. 51, 6311–6320 (2010)

    Article  Google Scholar 

  36. Leedom, A. J., Sullivan, A. B., Dong, B., Lau, D. & Gronert, K. Endogenous LXA4 circuits are determinants of pathological angiogenesis in response to chronic injury. Am. J. Pathol. 176, 74–84 (2010)

    Article  CAS  Google Scholar 

  37. Hassan, I. R. & Gronert, K. Acute changes in dietary ω-3 and ω-6 polyunsaturated fatty acids have a pronounced impact on survival following ischemic renal injury and formation of renoprotective docosahexaenoic acid-derived protectin D1. J. Immunol. 182, 3223–3232 (2009)

    Article  CAS  Google Scholar 

  38. Annacker, O. et al. Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J. Exp. Med. 202, 1051–1061 (2005)

    Article  CAS  Google Scholar 

  39. Monroe, K. M., McWhirter, S. M. & Vance, R. E. Identification of host cytosolic sensors and bacterial factors regulating the type I interferon response to Legionella pneumophila. PLoS Pathog. 5, e1000665 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Mariathasan and V. Dixit for Nlrc4−/− mice; I. Bergin and S. Griffey for pathology reports; D. Crown for help with survival experiments; L. Lopez for support in our animal facility; D. Bautista and R. Nichols for help with calcium imaging; and M. Fontana and members of the Barton and Vance laboratories for discussions. Work in R.E.V.’s laboratory is supported by Investigator Awards from the Burroughs Wellcome Fund and the Cancer Research Institute and by National Institutes of Health (NIH) grants AI075039, AI080749 and AI063302. K.G.’s laboratory is supported by NIH grants EY016136 and EY022208. J.v.M. is supported by a grant from the Cancer Research Coordinating Committee of the University of California.

Author information

Authors and Affiliations

Authors

Contributions

J.v.M. and R.E.V. conceived the study. J.v.M., R.E.V. and K.G. designed the experiments and wrote the paper. J.v.M. performed the experiments with help from N.J.T. M.M. performed experiments shown in Fig. 1a and Supplementary Fig. 1f. J.v.M., N.J.T., M.M., S.B.W., K.G. and R.E.V. analysed the results. A.F.K., B.A.K., C.R.B., S.H.L. and N.v.R. provided mice and/or reagents.

Corresponding authors

Correspondence to Karsten Gronert or Russell E. Vance.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-15. (PDF 10040 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Moltke, J., Trinidad, N., Moayeri, M. et al. Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature 490, 107–111 (2012). https://doi.org/10.1038/nature11351

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11351

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing